看一下这简单常微分怎么算
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 00:14:37
看一下这简单常微分怎么算
求常微分方程组dx/dt=5x+4y
dy/dt=4x+5y 的通解
忘记了
求常微分方程组dx/dt=5x+4y
dy/dt=4x+5y 的通解
忘记了
∵dx/dt=5x+4y,dy/dt=4x+5y
∴dy/dx=(4x+5y)/(5x+4y)
令z=y/x,则dy/dx=z+xdz/dx
∴z+xdz/dx=(4+5z)/(5+4z)
==>(5+4z)dz/(1-z²)=4dx/x
==>[9/(1-z)+1/(1+z)]dz=8dx/x
==>ln|1+z|-9ln|1-z|=8ln|x|+ln|C| (C是积分常数)
==>(1+z)/(1-z)^9=Cx^8
==>(1+y/x)/(1-y/x)^9=Cx^8
==>(x+y)/(x-y)^9=C
==>x+y=C(x-y)^9 (C是积分常数)
故原常微分方程组的通解是:x+y=C(x-y)^9 (C是积分常数).
∴dy/dx=(4x+5y)/(5x+4y)
令z=y/x,则dy/dx=z+xdz/dx
∴z+xdz/dx=(4+5z)/(5+4z)
==>(5+4z)dz/(1-z²)=4dx/x
==>[9/(1-z)+1/(1+z)]dz=8dx/x
==>ln|1+z|-9ln|1-z|=8ln|x|+ln|C| (C是积分常数)
==>(1+z)/(1-z)^9=Cx^8
==>(1+y/x)/(1-y/x)^9=Cx^8
==>(x+y)/(x-y)^9=C
==>x+y=C(x-y)^9 (C是积分常数)
故原常微分方程组的通解是:x+y=C(x-y)^9 (C是积分常数).