作业帮 > 数学 > 作业

函数f(x)=log4(x^2-ax+3a)在区间【2,+∞),则实数a的取值范围

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 23:10:09
函数f(x)=log4(x^2-ax+3a)在区间【2,+∞),则实数a的取值范围
A.(-∞,4) B.(-4,4] C.(-∞,-4)U[2,+∞) D[-4,2)
递增、忘打了
函数f(x)=log4(x^2-ax+3a)在区间【2,+∞),则实数a的取值范围
在区间上干嘛了= =递增?递减?连续?
选择题:
令a=-4,f(x)=log4(x^2+4x-12)显然当x=2时函数无定义(真数大于0)
排除AD
令a=4,f(x)=log4(x^2-4x+12)显然在[2,+∞)上递增(增增得增、而且定义域也符合)
所以B是正确答案.
详细的大题答案再慢慢打.
考虑函数f(x)=log4(x^2-ax+3a)在区间[2,+∞),上递增,只需要
1.x^2-ax+3a在在区间[2,+∞)上>0 恒成立
2.x^2-ax+3a在在区间[2,+∞)上递增(就可以用增增得增既法则)
令函数g(x)=x^2-ax+3a
分类讨论:
当a≤4时,
函数g(x)=x^2-ax+3a在区间[2,+∞)上递增已满足(对称轴x=a/2≤2,函数开口向上,明显在对称轴右侧递增),
g(x)在区间[2,+∞)上最小值g(x)min=g(2)=4-2a+3a=a+4>0 (函数在某区间上恒大于0等价于最小值大于0)
故-4