{an}满足a1=2,an+1=3an+3^(n+1)-2^n(n∈正整数),设bn=(an-2^n)/3^n,证明bn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 15:16:03
{an}满足a1=2,an+1=3an+3^(n+1)-2^n(n∈正整数),设bn=(an-2^n)/3^n,证明bn为等差数列,并求an的通项公式
这道题看起来好熟悉 bn+1-bn=(an+1-2的n+1次方)/3的n+1次方-(an-2的n次方)/3的n次方=(3an+3的n+1次方-2的n次方-2的n+1次方)/3的n+1次方-3(an-2的n次方)/3的n+1次方=1 所以bn为等差数列 所以bn为首项为0 公差为1的等差数列 bn=n-1 所以bn=(a的n次方-2的n次方)/3的n次方=n-1 所以an=(n-1)*3的n次方+2的n次方
{an}满足a1=2,an+1=3an+3^(n+1)-2^n(n∈正整数),设bn=(an-2^n)/3^n,证明bn
已知数列an,bn满足a1=1,a2=3,(b(n)+1)/bn=2,bn=a(n+1)-an,(n∈正整数)
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列
在数列{an}中,a1=1,an+1=[(n+1)/n]*an+2(n+1),设bn=an/n,(1)证明数列{bn}是
已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}
设数列an满足a1+3a2+3^2a3+……+3^(n-1)an=n/3,a是正整数,设bn=n/an,求数列bn的前n
已知数列{an}中,a1=3,an+1-2an=0,数列{bn}中,bn*an=(-1)^n (n是正整数) (1)求数
已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其
已知数列(An)中,A1=1/3,AnA(n-1)=A(n-1)-An(n>=2),数列Bn满足Bn=1/An
已知数列{An}满足:A1=5 An+1=2An+3(n∈N*),令Bn=An-3n
已知数列(An)满足A1=1 An+1=3An 数列(Bn)前n项和Sn=n*n+2n+1
等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=2n/3n+1,求lim(n→∞)an/bn