设函数f(t)=2t²-4λ|t|-1(λ∈R)(1)当λ=1/2时,求函数y=(sinx)在x∈[-π/6,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/07 05:34:52
设函数f(t)=2t²-4λ|t|-1(λ∈R)(1)当λ=1/2时,求函数y=(sinx)在x∈[-π/6,2/π]的最大值和最小值
(2)若关于x的方程f(sinx)=0在[-π/2,π/2]上有两个不同的实根,求实数λ的取值范围
(2)若关于x的方程f(sinx)=0在[-π/2,π/2]上有两个不同的实根,求实数λ的取值范围
上面的2/π 应该是π/2吧?
t =sinx在x∈[-π/6,2/π]的取值范围是 [ -1/2 ,1 ] ,则 |t| 取值范围[ 0 ,1 ] .因为λ=1/2 ,所以取最小值 |t| =1/2,最大值时 |t| =0 或1 .带入得最大最小值为 -1 ,-3/2 .
sinx在[-π/2,π/2]上取值范围为 [-1 ,1] .根据f(t)函数关于y轴对称,所以f(t)在[0 ,1 ]上有一个实根.将点 (1 ,0 )带入方程得到λ = 1/4 .所以当λ小于等于1/4时,符合题意
t =sinx在x∈[-π/6,2/π]的取值范围是 [ -1/2 ,1 ] ,则 |t| 取值范围[ 0 ,1 ] .因为λ=1/2 ,所以取最小值 |t| =1/2,最大值时 |t| =0 或1 .带入得最大最小值为 -1 ,-3/2 .
sinx在[-π/2,π/2]上取值范围为 [-1 ,1] .根据f(t)函数关于y轴对称,所以f(t)在[0 ,1 ]上有一个实根.将点 (1 ,0 )带入方程得到λ = 1/4 .所以当λ小于等于1/4时,符合题意
设函数f(t)=2t²-4λ|t|-1(λ∈R)(1)当λ=1/2时,求函数y=(sinx)在x∈[-π/6,
设t∈R,求函数f(x)=(x-2)+3在区间[t,t+1]的最大值g(t)和最小值h(t)
设函数f(x)=x^2-2x+2,x∈[t,t-1],t∈R,求函数f(x)的最小值与最大值
已知设函数f(x)=x^2-2x+2,设f(x)在[t,t+1](t∈R)上的最小值为g(t),求g(t)的表达式
已知函数f(x)=x^2+2x+2,设f(x)在[t,t+1]﹙t∈R﹚上的最小值为g(t),求g(t)的表达式
设f(x)=x^2-4x-4,x∈[t,t+1](t∈R),求函数f(x)的最小值g(t)的解析式,并求g(t)的最值.
已知y=f(x)=x2-2x+3,当x∈【t,t+1】时,求函数的最大值函数g(t)和最小值函数h(t),并求h(t)最
.f(x)=x^2+4x+3,t∈R,函数g(t)表示函数f(x)在区间[t,t+1]上的最小值,求g(t)的表达式
已知y=f(x)=x的平方一2X十3,当X∈[t,t+1]时,求函数的最大值g(t)和最小值函数h=(t)并求h(t)的
设函数f(x)=x²-4x+3在区间[t,t+1](x∈R)上的最小值为g(t)
设函数f(x)=x2-4x+4的定义域[t-2,t-1],求函数f(x)的最小值y=g(t),
设函数f(x)=x2-4x-4,x属于【t,t+1】,t属于R,求函数f(x)的最小值g(t)的解析