作业帮 > 数学 > 作业

错位相减法求和:求和:Sn=1+3x+5x2+7x3+…+(2n-1)xn-1.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:13:43
错位相减法求和:求和:Sn=1+3x+5x2+7x3+…+(2n-1)xn-1
错位相减法求和:求和:Sn=1+3x+5x2+7x3+…+(2n-1)xn-1.
由题可知,{(2n-1)xn-1}的通项是等差数列{2n-1}的通项与等比数列{xn-1}的通项之积.
∵Sn=1+3x+5x2+7x3+…+(2n-1)xn-1
∴xSn=x+3x2+…+(2n−3)xn−1+(2n-1)xn
两式相减得(1-x)Sn=1+2x+2x2+…+2xn-1-(2n-1)xn
①当x≠1,0时,由等比数列的求和公式得:(1-x)Sn=-1+
2(1−xn)
1−x-(2n-1)xn
∴Sn=
(2n−1)xn+1−(2n+1)xn+(1+x)
(1−x)2;
②当x=1时,Sn=1+3+5+…+(2n-1)=
n(1+2n−1)
2=n2
③当x=0时,Sn=1+0=1.