1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b);
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 08:41:57
1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b);
(3)存在x.属于[a,b],f(x.) f(a); (4)存在x.属于[a,b],f(a)-f(b)>f′(x.)(a-b)
其中结论正确的个数是( ) A.1 B.2 C.3 D.4
1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b);
(3)存在x。属于[a,b],f(x。) >=f(a); (4)存在x。属于[a,b],f(a)-f(b)>f′(x。)(a-b)
其中结论正确的个数是( ) A.1 B.2 C.3 D.4
(3)存在x.属于[a,b],f(x.) f(a); (4)存在x.属于[a,b],f(a)-f(b)>f′(x.)(a-b)
其中结论正确的个数是( ) A.1 B.2 C.3 D.4
1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b);
(3)存在x。属于[a,b],f(x。) >=f(a); (4)存在x。属于[a,b],f(a)-f(b)>f′(x。)(a-b)
其中结论正确的个数是( ) A.1 B.2 C.3 D.4
定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f'(a)>0,f′(b)<0,说明在区间(a,b)内存在x0,使f′(x0)=0,
所以函数f(x)在区间(a,b)内有极大值点,同时说明函数在区间[a,b]内至少有一个增区间和一个减区间.
由上面的分析可知,函数f(x)在区间[a,b]上不一定有零点,故①不正确;
因为函数在区间(a,b)内有极大值点,与实数b在同一个减区间内的极大值点的横坐标就是存在的一个x0,所以②正确;
函数f(x)在区间[a,b]的两个端点处的函数值无法判断大小,若f(b)>f(a),取x0=a,则③不正确;
当f(a)>f(b),且x0是极大值点的横坐标时结论④正确.
故选B.
所以函数f(x)在区间(a,b)内有极大值点,同时说明函数在区间[a,b]内至少有一个增区间和一个减区间.
由上面的分析可知,函数f(x)在区间[a,b]上不一定有零点,故①不正确;
因为函数在区间(a,b)内有极大值点,与实数b在同一个减区间内的极大值点的横坐标就是存在的一个x0,所以②正确;
函数f(x)在区间[a,b]的两个端点处的函数值无法判断大小,若f(b)>f(a),取x0=a,则③不正确;
当f(a)>f(b),且x0是极大值点的横坐标时结论④正确.
故选B.
1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b);
定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f'(a)>0,f′
函数y=f(X)的图像在区间[a,b]上是连续不断的,且f(a)*f(b)
已知定义在R上的函数f(x)满足:对于任意实数a,b,总有f(a+b)=f(a)+f(b).
已知f(x)是定义在[a,b] 上的函数,起图像是一条连续不断的曲线,且满足下列条件:
定义在R上的非零函数f(x)对任意实数a,b均有f(a+b)=f(a)*f(b),且当x1
已知函数f(x)的图像在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]) f2(
定义在R上的函数f(x)对任意实数a,b均有f(a+b)=f(a)×f(b),f(0)不等于0且f(x)为减函数
已知定义在R上的函数y=f(x)的图像是一条不间断的曲线,f(a)≠f(b),其中a
已知函数f(x)定义在R上,且对于任意a、b,都有f=(a+b)=f(a)+f(b),判断函数f(x)的奇偶性.
如果单调递增函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)xf(b)
已知f(x)是定义在R上的函数,对于任意实数a,b都有f(ab)=af(b)+bf(a),且f(2)=1求f(1\2)的