如何直接看出0到pai/2定积分cost/(sint+cost)与sint/(sint+cost)相等?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:46:09
如何直接看出0到pai/2定积分cost/(sint+cost)与sint/(sint+cost)相等?
只需令x=pi/2-t,则当x=0,t=pi/2,当x=pi/2,t=0,dx=-dt,那么
∫(0,pi/2)cosx/(sinx+cosx)dx
=-∫(pi/2,0)sint/(sint+cost)dt
=∫(0,pi/2)sinx/(sinx+cosx)dx
所以
∫(0,pi/2)cosx/(sinx+cosx)dx=∫(0,pi/2)sinx/(sinx+cosx)dx
=(1/2)[∫(0,pi/2)cosx/(sinx+cosx)dx+∫(0,pi/2)sinx/(sinx+cosx)dx]
=(1/2)∫(0,pi/2)(sinx+cosx)/(sinx+cosx)dx
=(1/2)∫(0,pi/2)dx=pi/4
∫(0,pi/2)cosx/(sinx+cosx)dx
=-∫(pi/2,0)sint/(sint+cost)dt
=∫(0,pi/2)sinx/(sinx+cosx)dx
所以
∫(0,pi/2)cosx/(sinx+cosx)dx=∫(0,pi/2)sinx/(sinx+cosx)dx
=(1/2)[∫(0,pi/2)cosx/(sinx+cosx)dx+∫(0,pi/2)sinx/(sinx+cosx)dx]
=(1/2)∫(0,pi/2)(sinx+cosx)/(sinx+cosx)dx
=(1/2)∫(0,pi/2)dx=pi/4
如何直接看出0到pai/2定积分cost/(sint+cost)与sint/(sint+cost)相等?
[(sint)^4-(sint)^6]从0 到π/2的积分是多少?[1-3cost+3(cost)^2-(cost)^3
求定积分:∫π0(sint+cost)dt=
∫sint/(cost+sint)dt
(sint cost)^2 的不定积分
∫cost/(sint+cost)dt在0到π取积分
(t-sint)(1-cost)√(1-cost)对t从0到2π积分,请问应该怎么积~
∫dt/(1+sint+cost)
∫cost/(sint^2) dt =∫dsint/sint^2 =-1/sint + C
一道积分题求助(t-sint)√(1-cost) dt
∫sint*sinwtdt怎么求积分?还有∫cost*coswtdt?
把曲线的参数方程化为一般方程:x=3sint,y=4sint,z=5cost (0小于等于t小于2pai)