是否存在常数a,b,c,是等式1^2+3^2+5^2+...+(2n-1)^2=an/3(bn^2+c)对任意正整数n都
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 14:02:30
是否存在常数a,b,c,是等式1^2+3^2+5^2+...+(2n-1)^2=an/3(bn^2+c)对任意正整数n都成立
因为1^2+2^2+……+n^2=n(n+1)(2n+1)/6
所以1^2+2^2+……+(2n)^2=(2n)(2n+1)(2*2n+1)/6=n(2n+1)(4n+1)/3
(2^2-1^2)+(4^2-3^2)+……+[(2n)^2-(2n-1)^2]
=(2+1)(2-1)+(4+3)(4-3)+……+(2n+2n-1)(2n-2n+1)
=1+2+……+2n
=2n(2n+1)/2
=n(2n+1)
所以[2^2+4^2+……+(2n)^2]-[1^2+3^3+……+(2n-1)^2]=n(2n+1)
[2^2+4^2+……+(2n)^2]+[1^2+3^3+……+(2n-1)^2]=1^2+2^2+……+(2n)^2=n(2n+1)(4n+1)
两式相减除2
所以
1^2+3^3+……+(2n-1)^2=[n(2n+1)(4n+1)/3-n(2n+1)]/2=n(2n+1)(2n-1)/3
=(n/3)*(4n^2-1)
所以a=1,b=4,c=-1
所以1^2+2^2+……+(2n)^2=(2n)(2n+1)(2*2n+1)/6=n(2n+1)(4n+1)/3
(2^2-1^2)+(4^2-3^2)+……+[(2n)^2-(2n-1)^2]
=(2+1)(2-1)+(4+3)(4-3)+……+(2n+2n-1)(2n-2n+1)
=1+2+……+2n
=2n(2n+1)/2
=n(2n+1)
所以[2^2+4^2+……+(2n)^2]-[1^2+3^3+……+(2n-1)^2]=n(2n+1)
[2^2+4^2+……+(2n)^2]+[1^2+3^3+……+(2n-1)^2]=1^2+2^2+……+(2n)^2=n(2n+1)(4n+1)
两式相减除2
所以
1^2+3^3+……+(2n-1)^2=[n(2n+1)(4n+1)/3-n(2n+1)]/2=n(2n+1)(2n-1)/3
=(n/3)*(4n^2-1)
所以a=1,b=4,c=-1
是否存在常数a,b,c,是等式1^2+3^2+5^2+...+(2n-1)^2=an/3(bn^2+c)对任意正整数n都
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.
是否存在常数a、b、c,使等式1*3+3*5+5*7+……+(2n-1)(2n+1)=n*(an^2+bn+c)/3对任
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数n都成立.(1)若数列
是否存在常数a、b、c,使等式1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=an^4+bn
是否存在常数a,b,c,使等式1^2+3^2……(2n-1)^2=an(bn^2+c)/3
是否存在常数abc,使得等式1*2^2+2*3^2+.+n(n+1)^n=n(n+1)(an^2+bn+c)/12成立?
是否存在常数C,使得等式1x4+2x7+3x10+.+n(3n+1)=n(n+c)(n+2c+1)对任意正整数n恒成立?
是否存在常数a,b,c,使等式1*2^2+2*3^2+.+n(n+1)^2=((n+n^2)/12)(bn+c+an^2
数列{an}的前n项和为Sn,存在常数ABC,使得an+Sn=An^2+Bn+C对任意正整数都成立
是否存在常数a.b使等式1^3+2^3+……n^3=an^2(n+b)^2对于任意正整数都成立?若成立求出ab并证明,不
{a} 、{b} 都是各项为正的数列,对任意的正整数n,都有an,bn^2,an+1 成等差数列,bn^2,an+1,b