数列极限的题目.求lim(√(2n+3)-√(2n-1)/√(3n+9)-√(3n+16))
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 01:17:56
数列极限的题目.
求lim(√(2n+3)-√(2n-1)/√(3n+9)-√(3n+16))
求lim(√(2n+3)-√(2n-1)/√(3n+9)-√(3n+16))
lim{[√(2n+3)-√(2n-1)]/[√(3n+9)-√(3n+16)]}
=lim{[√(2n+3)-√(2n-1)][√(3n+9)+√(3n+16)]/[(3n+9)-(3n+16)]}
=-(1/7)lim{[√(2n+3)-√(2n-1)][√(3n+9)+√(3n+16)]}
=-(1/7)lim{[√(3n+9)+√(3n+16)]/{1/[√(2n+3)-√(2n-1)]}
=-(1/7)lim{{[√(3n+9)+√(3n+16)]/{[√(2n+3)+√(2n-1)]/[(2n+3)-(2n-1)]}}
=-(4/7)lim{[√(3n+9)+√(3n+16)]/[√(2n+3)+√(2n-1)]}
=-(4/7)lim{[√(3+9/n)+√(3+16/n)]/[√(2+3/n)+√(2-1/n)]}
=-(4/7){[√3+√3]/[√2+√2]}
=-(4/7)[√3/√2]
=-(2/7)√6
=lim{[√(2n+3)-√(2n-1)][√(3n+9)+√(3n+16)]/[(3n+9)-(3n+16)]}
=-(1/7)lim{[√(2n+3)-√(2n-1)][√(3n+9)+√(3n+16)]}
=-(1/7)lim{[√(3n+9)+√(3n+16)]/{1/[√(2n+3)-√(2n-1)]}
=-(1/7)lim{{[√(3n+9)+√(3n+16)]/{[√(2n+3)+√(2n-1)]/[(2n+3)-(2n-1)]}}
=-(4/7)lim{[√(3n+9)+√(3n+16)]/[√(2n+3)+√(2n-1)]}
=-(4/7)lim{[√(3+9/n)+√(3+16/n)]/[√(2+3/n)+√(2-1/n)]}
=-(4/7){[√3+√3]/[√2+√2]}
=-(4/7)[√3/√2]
=-(2/7)√6
数列极限的题目.求lim(√(2n+3)-√(2n-1)/√(3n+9)-√(3n+16))
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
数列极限题目.求lim(cosa^n+sina^n)/(cos^n-sina^n)(0
求极限 lim( √N^2+N )-N X趋向于无穷 求极限
高数简单求极限lim[(3√n^2)*sin ]/(n+1) n--∞n的3/2次方乘以sin( n的阶乘) 除以 n+
高数 数列极限lim(1+ 2^n + 3^n)^(1/n) n趋于无穷大求极限
数列的极限计算lim(3n²+4n-2)/(2n+1)²
求极限 lim(n->无穷)[(3n^2-2)/(3n^2+4)]^[n(n+1)]
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
求极限lim(x→∞)(n√1+n√2+……+n√10)
求数列lim√n(√(n 2)-√(n-1))的极限(n趋向于无穷大)