关于复合函数的极限运算法则
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:44:23
关于复合函数的极限运算法则
同济第五版《高等数学》P48的定理六的一个条件:
”且存在δ>0,当X属于x0的δ0去心邻域时,有g(x)不等于u0,则
lim(x→x0)f〔g(x)〕=lim(u→u0)f(u)=A”
这个条件起什么作用啊?从证明过程看是需要的,但是举不出反例啊!
(符号不好打,凑合着理解吧)
请热心人注意看清一下问题,最好翻一下书上那个地方.我的问题不是关于极限定义的,而是关于那个定理的一个条件的.如果有满意的回答愿追加赏金.
同济第五版《高等数学》P48的定理六的一个条件:
”且存在δ>0,当X属于x0的δ0去心邻域时,有g(x)不等于u0,则
lim(x→x0)f〔g(x)〕=lim(u→u0)f(u)=A”
这个条件起什么作用啊?从证明过程看是需要的,但是举不出反例啊!
(符号不好打,凑合着理解吧)
请热心人注意看清一下问题,最好翻一下书上那个地方.我的问题不是关于极限定义的,而是关于那个定理的一个条件的.如果有满意的回答愿追加赏金.
(1)你已理解,"从证明过程看是需要的".这就对了!事实上,这种需要,是为了不失一般性,为了符合"极限的定义"之需要,并不是g(x)不符合这个条件就不成立了的那种需要.而极限这样定义,却是为了研究那些趋于x0而不达到x0之问题,至于达到x0的情况,是比达不到的情况更简单的.
(2)具体说,你不可能举出反例.因为当g(x)等于u0时,结论必真.
(3)这样理解:是为了符合极限定义中"(x-x0)的绝对值>0"之要求,当不符合>0时,极限仍成立,用"连续"的情况来理解:见同济第五版《高等数学》P61的前7行,再参看P66定理3定理4,应该可以想明白了.
(2)具体说,你不可能举出反例.因为当g(x)等于u0时,结论必真.
(3)这样理解:是为了符合极限定义中"(x-x0)的绝对值>0"之要求,当不符合>0时,极限仍成立,用"连续"的情况来理解:见同济第五版《高等数学》P61的前7行,再参看P66定理3定理4,应该可以想明白了.