作业帮 > 数学 > 作业

1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + ...+ 1/(x+2005)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:05:09
1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + ...+ 1/(x+2005)(x+2006) = 1/2x+4012
1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + ...+ 1/(x+2005)
1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + ...+ 1/(x+2005)(x+2006)
=1/(x+1)-1/(x+2) + 1/(x+2)-1/(x+3) + 1/(x+3)-1/(x+4) + .+ 1/(x+2005)-1/(x+2006)
=1/(x+1)-1/(x+2006)
=2005/(x+1)(x+2006)
1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + ...+ 1/(x+2005)(x+2006) = 1/2x+4012
2005/(x+1)(x+2006) = 1/2x+4012
之后就是解方程了