证明抛物线的通径的两个端点的横坐标之积,纵坐标之积分别都是定值
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 08:02:28
证明抛物线的通径的两个端点的横坐标之积,纵坐标之积分别都是定值
设直线l与抛物线y^2=2px(p>0)交于A、B两点,且OA⊥OB(O为坐标原点)求证:
(1)A、B两点的横坐标之积,纵坐标之积分别都是定值.
(2)直线AB经过一个定点.
设直线l与抛物线y^2=2px(p>0)交于A、B两点,且OA⊥OB(O为坐标原点)求证:
(1)A、B两点的横坐标之积,纵坐标之积分别都是定值.
(2)直线AB经过一个定点.
1)
设A(x1,y1),B(x2,y2)
则:y1^2=2px1,y2^2=2px2
(y1y2)^2=4p^2x1x2
而由OA⊥OB,知,y1/x1*y2/x2=-1
y1y2=-x1x2
所以,
(x1x2)^2=4p^2x1x2
x1x2=4p^2
y1y2=-x1x2=-4p^2
所以,A、B两点的横坐标之积,纵坐标之积分别都是定值.
2)
y2^2-y1^2=2p(x2-x1)
AB斜率=(y2-y1)/(x2-x1)=2p/(y2+y1)
AB直线方程为:y=2p(x-x1)/(y2+y1)+y1
y(y2+y1)-2p(x-x1)=y1(y2+y1)
而y1(y2+y1)=y1y2+y1^2=-4p^2+2px1
所以,y(y2+y1)-2p(x-x1)=-4p^2+2px1
y(y2+y1)-2px+4p^2=0
y(y2+y1)-2p(x-2p)=0
所以,x=2p,y=0时,等式恒成立
直线AB经过定点(2p,0)
设A(x1,y1),B(x2,y2)
则:y1^2=2px1,y2^2=2px2
(y1y2)^2=4p^2x1x2
而由OA⊥OB,知,y1/x1*y2/x2=-1
y1y2=-x1x2
所以,
(x1x2)^2=4p^2x1x2
x1x2=4p^2
y1y2=-x1x2=-4p^2
所以,A、B两点的横坐标之积,纵坐标之积分别都是定值.
2)
y2^2-y1^2=2p(x2-x1)
AB斜率=(y2-y1)/(x2-x1)=2p/(y2+y1)
AB直线方程为:y=2p(x-x1)/(y2+y1)+y1
y(y2+y1)-2p(x-x1)=y1(y2+y1)
而y1(y2+y1)=y1y2+y1^2=-4p^2+2px1
所以,y(y2+y1)-2p(x-x1)=-4p^2+2px1
y(y2+y1)-2px+4p^2=0
y(y2+y1)-2p(x-2p)=0
所以,x=2p,y=0时,等式恒成立
直线AB经过定点(2p,0)
证明抛物线的通径的两个端点的横坐标之积,纵坐标之积分别都是定值
定积分的两个证明题,
已知抛物线x^2=2py(P>0)的焦点为F,过点F的直线l交抛物线于A,B两点,A、B两点的横坐标之积为定值-4
可积函数的积的定积分等于各自的定积分之积
求解一道定积分证明题,求详解.尤其是圈出来的框里积分下限为什么是二分之
已知抛物线与X周的两个交点的横坐标为-1,3,与Y轴交点纵坐标为副三分之二.确定抛物线的解析式.
抛物线y=ax的平方+bx+C与x轴交点的横坐标分别是负二分之一,二分之三,与y轴交点的纵坐标是负五
如何证明定积分的绝对值小于等于被积函数的绝对值的定积分
两个函数定积分的积与两个函数积的定积分相同吗?为什么?
利用定积分的性质证明
一个定积分性质证明的问题
高等数学定积分的证明题