高一下学期数学等比数列应用四
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:22:10
高一下学期数学等比数列应用四
(1)
an = a1+(n-1)d ; an>0
S3=12
(a1+d)3=12
a1+d=4 (1)
2a1,a2,a3+1成等比数列
2a1.(a3+1) =(a2)^2
2a1[a1+2(4-a1) +1] = 16
a1[-a1+9] = 8
(a1)^2-9a1+8=0
(a1-1)(a1-8)=0
a1=1 or 8 ( rejected)
from (1) d=3
an = 1+3(n-1) =3n-2
(2)
let
S= 1.(1/3)^0+2.(1/3)^1+...+n.(1/3)^(n-1) (1)
(1/3)S= 1.(1/3)^1+2.(1/3)^2+...+n.(1/3)^n (2)
(1)-(2)
(2/3)S = [ 1+1/3+ ...+(1/3)^(n-1)] -n.(1/3)^n
= (3/2)[ 1-(1/3)^n] -n.(1/3)^n
S= (9/4)[ 1-(1/3)^n] - (3/2)n.(1/3)^n
bn=an/3^n
= n(1/3)^(n-1) - 2(1/3)^n
Tn=b1+b2+...+bn
=S - (1-(1/3)^n )
=5/4[ 1-(1/3)^n] - (3/2)n.(1/3)^n
= 5/4 - ( 3n/2 +5/4).(1/3)^n
an = a1+(n-1)d ; an>0
S3=12
(a1+d)3=12
a1+d=4 (1)
2a1,a2,a3+1成等比数列
2a1.(a3+1) =(a2)^2
2a1[a1+2(4-a1) +1] = 16
a1[-a1+9] = 8
(a1)^2-9a1+8=0
(a1-1)(a1-8)=0
a1=1 or 8 ( rejected)
from (1) d=3
an = 1+3(n-1) =3n-2
(2)
let
S= 1.(1/3)^0+2.(1/3)^1+...+n.(1/3)^(n-1) (1)
(1/3)S= 1.(1/3)^1+2.(1/3)^2+...+n.(1/3)^n (2)
(1)-(2)
(2/3)S = [ 1+1/3+ ...+(1/3)^(n-1)] -n.(1/3)^n
= (3/2)[ 1-(1/3)^n] -n.(1/3)^n
S= (9/4)[ 1-(1/3)^n] - (3/2)n.(1/3)^n
bn=an/3^n
= n(1/3)^(n-1) - 2(1/3)^n
Tn=b1+b2+...+bn
=S - (1-(1/3)^n )
=5/4[ 1-(1/3)^n] - (3/2)n.(1/3)^n
= 5/4 - ( 3n/2 +5/4).(1/3)^n