作业帮 > 数学 > 作业

高等数学的一道求极限题目:为什么X趋近于0是,X-sinX=X^3/6,而不是sinX~X,从而等于X-X=0?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 11:06:33
高等数学的一道求极限题目:为什么X趋近于0是,X-sinX=X^3/6,而不是sinX~X,从而等于X-X=0?
我们学过等价无穷小的替换规则,当X趋近于0时,sinX~X,所以X-sinX=X-X=0.这个有什么错误?
为什么X趋近于0是,X-sinX=X^3/6?是怎么运用到泰勒公式展开式推导的?
高等数学的一道求极限题目:为什么X趋近于0是,X-sinX=X^3/6,而不是sinX~X,从而等于X-X=0?
将sinX进行泰勒展开

舍去相对于X^3的小量即可(在这里是更高阶项)
再问: 当X趋近于0时,sinX~X,所以X-sinX=X-X=0.这个有什么错误?这里为什么不能用等价无穷小直接代换?