1、定义在R上的函数f(x)(f(x)≠0)满足对任意实数x1、x2都有f(x1+x2)=f(x1)f(x2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:04:53
1、定义在R上的函数f(x)(f(x)≠0)满足对任意实数x1、x2都有f(x1+x2)=f(x1)f(x2)
且x>0时,0<f(x)<1,判断函数f(x)的单调性.
2、定义在R上的不恒为0的函数f(x)满足:对任意x1、x2都有f(x1x2)=x2*f(x1)+x1*f(x2),判断函数奇偶性.
十万火急!
且x>0时,0<f(x)<1,判断函数f(x)的单调性.
2、定义在R上的不恒为0的函数f(x)满足:对任意x1、x2都有f(x1x2)=x2*f(x1)+x1*f(x2),判断函数奇偶性.
十万火急!
1.因为f(x1+x2)=f(x1)f(x2)
所以f(x1-0)=f(x1)f(0),即f(0)=1.
故有f(x1-x1)=f(x1)f(-x1)=1,即f(x1)和f(-x1)同号且互为倒数.
⑴当x>0时,0-x,f(x)
所以f(x1-0)=f(x1)f(0),即f(0)=1.
故有f(x1-x1)=f(x1)f(-x1)=1,即f(x1)和f(-x1)同号且互为倒数.
⑴当x>0时,0-x,f(x)
1、定义在R上的函数f(x)(f(x)≠0)满足对任意实数x1、x2都有f(x1+x2)=f(x1)f(x2)
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且
定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>
已知定义在实数上的函数f(x)满足对任意函数,都有f(x1*x2)=f(x1)+f(x2)成立,确定f(x)奇偶性?
定义在R上的偶函数f(x)满足:对任意的x1,x2属于(-∞,0],X1≠X2,有(x2-x1)(f(x1)-f(x2)
若定义在R上的函数f(X)满足:对任意X1,X2都有f(X1+X2)=f(X1)+f(X2)+1,则f(X)+1为偶函数
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f
已知函数y=f(x)对于定义域内的任意实数x1,x2(x1≠x2)都有f(x1)-f(x2)/(x1-x2)>0,
定义在r上的偶函数f(x)满足:对任意x1 x2属于(负无穷,0】(x1≠x2)都有x2-x1/f(x2)-f(x1)>
若定义在R上的函数f(x)对任意的x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x〉0时,f
若定义在R上的函数f(x)满足对任意两个实数x1,x2有f(x1+x2)=f(x1)+f(x2)+1,则正确的是