设P是双曲线x24−y212=1右分支上任意一点,F1,F2分别为左、右焦点,设∠PF1F2=α,∠PF2F1=β(如图
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 08:00:46
设P是双曲线
x
P是双曲线
x2 4− y2 12=1右分支上任意一点,F1,F2分别为左、右焦点, ∴a=2,b=2 3,c=4,F1(-4,0),F2(4,0), 设△PF1F2的内切圆圆心为M,内切圆与x 轴的切点为N,半径为r,则M与N有相同的横坐标, 由双曲线的定义|pF1|-|PF2|=4,及切线长定理得,|NF1|-|NF2|=4, 又|NF1|+|NF2|=2c=8,∴|NF1|=6,|NF2|=2, 则tan α 2= r |NF1|= r 6,tan β 2= r |NF2|= r 2, ∴3tan α 2=tan β 2.
设P是双曲线x24−y212=1右分支上任意一点,F1,F2分别为左、右焦点,设∠PF1F2=α,∠PF2F1=β(如图
点P是双曲线x24−y212=1上的一点,F1、F2分别是双曲线的左、右两焦点,∠F1PF2=90°,则|PF1|•|P
设P为双曲线x2-y212=1上的一点,F1,F2是该双曲线的两个焦点,若|PF1|:|PF2|=3:2,则△PF1F2
F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲
若双曲线x24−y212=1上的一点P到它的右焦点的距离为8,则点P到它的左焦点的距离是( )
已知椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该
设双曲线的中心在坐标原点,对称轴是坐标轴,F1、F2是左、右焦点,是双曲线上一点,且∠F1PF2=600,S
设F1,F2分别是双曲线 的左、右焦点.若双曲线上存在点A,使∠F1AF2=90º,且|AF1|=3|AF2|
设F1,F2分别为双曲线x^2/16-y^2/20=1的左,右焦点,点P在双曲线上,若点P到焦点F1的距离等于9,则点P
圆锥曲线 试题 已知点F1,F2分别为双曲线x2/a2-y2=1(a>0)的左,右焦点,P为双曲线右支上的任意一点,若|
设P是双曲线x²/9—y²/16=1上一点,F1,F2分别是双曲线的左、右焦点,若lPF1l=7,则
设P为椭圆x^2/a^2+y^2/b^2=1上一点,F1,F2为焦点,如果∠PF1F2=75°,∠PF2F1=15°,则
|