f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a
f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a
请问(x趋于a)lim[f(x)-f(a)]/(x-a)^2=-1,求导数f'(a)
设f(x)在x=a处有二阶导数,且f'(x)≠0,求lim x→a[1/f(x)-f(a) - 1/(x-a)f'(a)
已知函数f(x)在a的某个邻域内有意义且x趋于a时lim(f(x)-f(a))/(x-a)^2=1,则f(x)在a处(
设函数f(x)有二阶连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
lim (f(x)-f(a))/(x-a)^2=-10,则f(x)在x=a处()
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,
设x趋于无穷大时,limf'(x)=k,常数a>0,用拉格朗日中值定理求x趋于无穷大时,lim[f(x+a)-f(x)]
若函数f(x)在x趋于a处可导,则lim.x趋于a.f(x)等于
f(x)在x=0处连续,且x→0时,lim (f(2x)-f(x))/x = A(常数).求证 f(x)在x=0处可导,
x趋于a lim f(x)=b; t趋于b,lim