收敛、发散的判断已知级数的通项:an=√{2-√[2+√(2+...√2)]}注意,这是一个根号内有一串串的根号其中√[
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 19:03:44
收敛、发散的判断
已知级数的通项:
an=√{2-√[2+√(2+...√2)]}注意,这是一个根号内有一串串的根号
其中√[2+(...+√2)]共n-1层
试判断由通项an组成的级数的敛散性
已知级数的通项:
an=√{2-√[2+√(2+...√2)]}注意,这是一个根号内有一串串的根号
其中√[2+(...+√2)]共n-1层
试判断由通项an组成的级数的敛散性
收敛的
这是比较标准的敛散判定例题
判定方法如下
a1=√2=2cospi/4
a2=√(2-√2)=√(2-2cospi/4)=2sinpi/8
a3=2sinpi/16
an=2sinpi/2^(n+1)
所以,所给级数可化为:
2(sinpi/4+sinpi/8+sinpi/16+...+sinpi/2^(n+1)+...
那个和的符号还有什么上下标的...省了
用达朗贝尔判别法,n→∞求极限
lim[sinpi/2^(n+2)]//[sinpi/2^(n+1)
=lim(1/2)*[pi/2^(n+1)/[sinpi/2^(n+1)]*[sinpi/2^(n+2)]/[pi/2^(n+2)]
=1/2
这是比较标准的敛散判定例题
判定方法如下
a1=√2=2cospi/4
a2=√(2-√2)=√(2-2cospi/4)=2sinpi/8
a3=2sinpi/16
an=2sinpi/2^(n+1)
所以,所给级数可化为:
2(sinpi/4+sinpi/8+sinpi/16+...+sinpi/2^(n+1)+...
那个和的符号还有什么上下标的...省了
用达朗贝尔判别法,n→∞求极限
lim[sinpi/2^(n+2)]//[sinpi/2^(n+1)
=lim(1/2)*[pi/2^(n+1)/[sinpi/2^(n+1)]*[sinpi/2^(n+2)]/[pi/2^(n+2)]
=1/2
收敛、发散的判断已知级数的通项:an=√{2-√[2+√(2+...√2)]}注意,这是一个根号内有一串串的根号其中√[
设级数∑(an)^2收敛 则级数∑an/n是收敛还是发散
若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?
高数题,关于级数收敛的,判断级数是绝对收敛还是条件收敛还是发散.
级数1/2的根号n次方如何证明收敛
判断级数-1/√2+1/√3-1/√4..是否收敛 是条件收敛还是绝对收敛
请判断下面这个级数的敛散性,如果收敛,那是绝对收敛还是条件收敛? 1/n^2 + (-1)^n乘以根号n分之一
设正项级数∑Un发散,Sn是Un的部分和数列,证明级数∑Un/Sn^2收敛.
级数根号下(2n+1)/n的@次方收敛的充要条件是@满足不等式?
判断级数∑(n=1)(-1)^n/(n+根号n)是绝对收敛,条件收敛还是发散
1/(n^2+2)是不是收敛级数,那1/(2n+1)又是不是发散的呢?请高手再举些收敛或发散级数的例子!
帮忙判断一下这个级数的是绝对收敛还是条件收敛还是发散?