已知t为常数,函数y=|x²-2x|在区间[0,3]上的最大值为2,则t=?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:43:55
已知t为常数,函数y=|x²-2x|在区间[0,3]上的最大值为2,则t=?
我的解答方法是这样的:
y=|x²-2x-t|=|(x-1)²-(t+1)|
∵|x²-2x|在区间[0,3]上有最大值为2
∴(x-1)²最大,(t+1)最小
∴x=3时(x-1)²最大=4
∴t+1=2,t=1
看了看答案,结果是对的,但总觉得过程有些问题,大家帮我看看,
|x²-2x-t|题目改改
我的解答方法是这样的:
y=|x²-2x-t|=|(x-1)²-(t+1)|
∵|x²-2x|在区间[0,3]上有最大值为2
∴(x-1)²最大,(t+1)最小
∴x=3时(x-1)²最大=4
∴t+1=2,t=1
看了看答案,结果是对的,但总觉得过程有些问题,大家帮我看看,
|x²-2x-t|题目改改
应该分两种情况讨论:
当(x-1)^2>(t+1)时,y=(x-1)^2-t-1,此时y在给定区间的最大值为3-t=2,所以t=1
当(x-1)^2
当(x-1)^2>(t+1)时,y=(x-1)^2-t-1,此时y在给定区间的最大值为3-t=2,所以t=1
当(x-1)^2
已知t为常数,函数y=|x²-2x-t|在区间【0,3】上的最大值为3,则t=________
已知t为常数,函数y=|x²-2x|在区间[0,3]上的最大值为2,则t=?
已知t为常数,函数y=|x2-2x-t|在区间[0,3]上的最大值为2,则t=______.
已知:t为常数,函数y=|x2-2x+t|在区间[0,3]上的最大值为3,则实数t=______.
已知t为常数,函数f(x)=|x^3-3x-t+1|在区间【-2,1】上的最大值为2,则实数t=
已知t为常数,函数f(x)=│x^3-3x-t+1│在区间[-2,1]上的最大值为2,则实数t=
已知函数f(x)=|x^2-2x-t|在区间[0,3]上的最大值为2,则实数t=
已知函数y=sin(πx/3)在区间(0,t)上至少取得2次最大值,则正整数t的最小值是
求函数y=2x²+x-1在区间[t,t+1]上的最大值和最小值
函数y=2(x²-2x)+3在区间[0,3]上的最大值为,最小值为
若t为大于-2的常数,求函数f(x)=x^3-3x在区间{-2,t}上的最值
已知f(x+2)=x平方-3x+5 求f(x)的解析式 求f(x)在闭区间[t,t+1](t属于R为常数)的最大值