设数列{an}:a0=2,a1=16,an+2=16an+1-63an,n∈N*,则a2005被64除的余数为( )
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 20:11:41
设数列{an}:a0=2,a1=16,an+2=16an+1-63an,n∈N*,则a2005被64除的余数为( )
A. 0
B. 2
C. 16
D. 48
A. 0
B. 2
C. 16
D. 48
∵an+2=16an+1-63an,
∴an+2-7an+1=9an+1-63an,或an+2-9an+1=7an+1-63an
即an+2-7an+1=9(an+1-7an),或an+2-9an+1=7(an+1-9an),
又∵a0=2,a1=16,
∴{an-7an-1}是首项为2,公比为9的等比数列,
{an-9an-1}是首项为-2,公比为7的等比数列.
∴an+1-7an=2•9n,
an+1-9an=-2•7n.
联立上述两式解得,
an=9n+7n,
a2005=92005+72005
=(8+1)2005+(8-1)2005
=2(
C0200582005+
C2200582003+…+8),
∴上式中除最后一项8之外都是64的倍数,
∴a2005被64除的余数为2×8=16.
故选:C.
∴an+2-7an+1=9an+1-63an,或an+2-9an+1=7an+1-63an
即an+2-7an+1=9(an+1-7an),或an+2-9an+1=7(an+1-9an),
又∵a0=2,a1=16,
∴{an-7an-1}是首项为2,公比为9的等比数列,
{an-9an-1}是首项为-2,公比为7的等比数列.
∴an+1-7an=2•9n,
an+1-9an=-2•7n.
联立上述两式解得,
an=9n+7n,
a2005=92005+72005
=(8+1)2005+(8-1)2005
=2(
C0200582005+
C2200582003+…+8),
∴上式中除最后一项8之外都是64的倍数,
∴a2005被64除的余数为2×8=16.
故选:C.
设数列{an}:a0=2,a1=16,an+2=16an+1-63an,n∈N*,则a2005被64除的余数为( )
设数列{an},a1=3,an+1=3an-2(n∈N*)
已知数列{an}满足an^2=a(n+1)an-1(n>=1),且a1=根号2,则与根号(a2005)最接近的自然数是
已知数列{an}满足a1=1,an+1=2an/(an+2)(n∈N+),则数列{an}的通项公式为
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
数列{an}.a0=1,an=a0+a1+.an-1(n大于等于1)则an等于多少.an=a0+a1+...+an-1
已知:数列{an}满足a1=16,an+1-an=2n,则ann的最小值为( )
设数列{an}中,a1=2,an+1=an+n+1,则通项an=?
已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.
设数列{an}中,a1=2,a(n+1)=an+n+1,求an
设数列{an}满足an+1/an=n+2/n+1,且a1=2
数列{an}满足a1=33,a(n+1)-an=2n,则an/n的最小值为_