若z=arctanx/y,证明xdz/dx+ydz/dy=0
若z=arctanx/y,证明xdz/dx+ydz/dy=0
已知方程 F[x(y,z),y(x,z),z(x,y)]=0, 且函数偏导数存在 ,证明 dz/dx*dx/dy*dy/
f(x,y,z)=0,z=g(x,y),求dy/dx,dz/dx
y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy
设y=sin^2•e^arctanx.求dy/dx
设f x 为可导函数,y=f^2(x+arctanx),求dy/dx
一道高数题.求导y=x的x次方+arctanx 求dy/dx
若z=e^(x^2+y^3),求dz/dx,dz/dy
证明若X和Y不相关,则有D(X+Y)=DX+DY成立
dy/dx+y+1=0
设f(x)可导,且f'(0=1,又y=f(x^2+sin^2x)+f(arctanx),求dy/dx /x=0
设y=f[(3x-2)/(3x+2)]且f'(x)=arctanx^2,则dy/dx|x=0的值多少