将sinx+siny+sinz-sin(x+y+z)化为积的形式
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 16:17:40
将sinx+siny+sinz-sin(x+y+z)化为积的形式
sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]
sinx+siny+sinz-sin(x+y+z)
=2sin[(x+y)/2]cos[(x-y)/2]+sinz-sin(x+y)cosz-sinzcos(x+y)
=2sin[(x+y)/2]cos[(x-y)/2]+sinz[1-cos(x+y)]-sin(x+y)cosz
=2sin[(x+y)/2]cos[(x-y)/2]+2sinz*sin[(x+y)/2]^2-2sin[(x+y)/2]cos[(x+y)/2]cosz
=2sin[(x+y)/2]*{cos[(x-y)/2]+sinzsin[(x+y)/2]-cos[(x+y)/2]cosz}
=2sin[(x+y)/2]*{cos[(x-y)/2]-cos[z+(x+y)/2]}
=2sin[(x+y)/2]*2sin[(x+z)/2]sin[(y+z)/2]
=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]
sinx+siny+sinz-sin(x+y+z)
=2sin[(x+y)/2]cos[(x-y)/2]+sinz-sin(x+y)cosz-sinzcos(x+y)
=2sin[(x+y)/2]cos[(x-y)/2]+sinz[1-cos(x+y)]-sin(x+y)cosz
=2sin[(x+y)/2]cos[(x-y)/2]+2sinz*sin[(x+y)/2]^2-2sin[(x+y)/2]cos[(x+y)/2]cosz
=2sin[(x+y)/2]*{cos[(x-y)/2]+sinzsin[(x+y)/2]-cos[(x+y)/2]cosz}
=2sin[(x+y)/2]*{cos[(x-y)/2]-cos[z+(x+y)/2]}
=2sin[(x+y)/2]*2sin[(x+z)/2]sin[(y+z)/2]
=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]
将sinx+siny+sinz-sin(x+y+z)化为积的形式
将sinx+siny+sinz-sin(x+y+z)化为积的形式
三角不等式证明证明sin(x+y)+sin(y+z)+sin(z+x)>sinx+siny+sinz+sin(x+y+z
证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+
已知x,y,z属于(0,派/2),sin^2x+sin^2y+sin^2z=1,求(sinx+siny+sinz)/(c
已知sinx+siny+sinz=cosx+cosy+cosz=0,求tan(x+y+z)+tanxtanytanz的值
sinx+siny+sinz=0,cosx+cosy+cosz=0,求cos(y-z)的值.
已知x,y,z均为锐角,且sinx+sinz=siny,cosx-cosz=cosy,求x-y的值.
怎样将函数y=2sinxcosx+cos²x-sin²x化为y=Asin﹙ωx+φ﹚的形式?
求函数z=sinx+siny+sin(x+y)(0
均值不等式的疑问x+y+z = pi ,求 sinx+siny+sinz 的最大值这题用和差化积做是(3/2)*根号2,
已知sinx+siny+sinz=0,cosx+cosy+cosz=0 则cos(x-y)=______ 要详解