作业帮 > 综合 > 作业

将sinx+siny+sinz-sin(x+y+z)化为积的形式

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 16:17:40
将sinx+siny+sinz-sin(x+y+z)化为积的形式
将sinx+siny+sinz-sin(x+y+z)化为积的形式
sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]
sinx+siny+sinz-sin(x+y+z)
=2sin[(x+y)/2]cos[(x-y)/2]+sinz-sin(x+y)cosz-sinzcos(x+y)
=2sin[(x+y)/2]cos[(x-y)/2]+sinz[1-cos(x+y)]-sin(x+y)cosz
=2sin[(x+y)/2]cos[(x-y)/2]+2sinz*sin[(x+y)/2]^2-2sin[(x+y)/2]cos[(x+y)/2]cosz
=2sin[(x+y)/2]*{cos[(x-y)/2]+sinzsin[(x+y)/2]-cos[(x+y)/2]cosz}
=2sin[(x+y)/2]*{cos[(x-y)/2]-cos[z+(x+y)/2]}
=2sin[(x+y)/2]*2sin[(x+z)/2]sin[(y+z)/2]
=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]