已知ABCD是菱形,PA垂直面ABCD,PA=AD=2,角BAD=60°.求点A到平面PBD的距离和二面角A-PB-D的
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/15 13:21:43
已知ABCD是菱形,PA垂直面ABCD,PA=AD=2,角BAD=60°.求点A到平面PBD的距离和二面角A-PB-D的余弦值
如图菱形ABCD中(红色线为辅助线),连结AC,连结BD交AC于O点,则AC⊥BD,O为BD中点;
连结PO,过A作AQ⊥PO于Q
∵PA⊥面ABCD ∴PA⊥BD
又∵BD⊥AC,∴BD⊥面PAC,即BD⊥面POQ
∴BD⊥AQ
又∵AQ⊥PO,PO∩BD=O ∴AQ⊥面PBD
于是AQ的长度即为点A到平面PBD的距离
由∠BAD=60°,得:BD=AD=AB=2
AO=√3,PO=√(PA²+AO²)=√7
AQ=AO×AP÷PO=(2√21)/7
即A到平面PBD的距离为(2√21)/7
过点A作AE⊥PB于E,连结EQ
∵AE⊥PB,AQ⊥面PBD,
∴EQ⊥PB,∠AEQ为二面角A-PB-D的平面角
Rt△PAB中,PB=√2×AB=2√2,AE=AB×AP÷PB=√2
∴sin∠AEQ=AQ/AE=(√42)/7
经观察∠AEQ为锐角
∴cos∠AEQ=√{1-[(√42)/7]²}=(√7)/7
即二面角A-PB-D的余弦值为(√7)/7
连结PO,过A作AQ⊥PO于Q
∵PA⊥面ABCD ∴PA⊥BD
又∵BD⊥AC,∴BD⊥面PAC,即BD⊥面POQ
∴BD⊥AQ
又∵AQ⊥PO,PO∩BD=O ∴AQ⊥面PBD
于是AQ的长度即为点A到平面PBD的距离
由∠BAD=60°,得:BD=AD=AB=2
AO=√3,PO=√(PA²+AO²)=√7
AQ=AO×AP÷PO=(2√21)/7
即A到平面PBD的距离为(2√21)/7
过点A作AE⊥PB于E,连结EQ
∵AE⊥PB,AQ⊥面PBD,
∴EQ⊥PB,∠AEQ为二面角A-PB-D的平面角
Rt△PAB中,PB=√2×AB=2√2,AE=AB×AP÷PB=√2
∴sin∠AEQ=AQ/AE=(√42)/7
经观察∠AEQ为锐角
∴cos∠AEQ=√{1-[(√42)/7]²}=(√7)/7
即二面角A-PB-D的余弦值为(√7)/7
已知ABCD是菱形,PA垂直面ABCD,PA=AD=2,角BAD=60°.求点A到平面PBD的距离和二面角A-PB-D的
变长为4的菱形ABCD中,角BAD=60度,PA垂直于平面ABCD,PA=2求点A到平面PBC的距离
已知边长为a的正方形ABCD外有一点P,使PA垂直于平面ABCD,PA=a,求二面角A-PB-C和B-PC-D的大小
关于二面角的题目如图,P是边长为2的菱形ABCD所在平面外一点,已知角BAD=120度,PA垂直面ABCD,且PA=1,
在边长为a的棱形ABCD中,∠ABC=60°,PC垂直面ABCD,E,F是PA和AB的中点求E到平面PBC的距离
已知点P是平面四边形ABCD所在平面外一点,且AB=BC,AD=CD,PA=PC,证明面PAC垂直面PBD
高中立体几何 二面角已知四棱锥P-ABCD是底面ABCD是平行四边形,面PAB垂直面ABCD,且PA=BC=a,PB=A
已知四边形ABCD是正方形,PD⊥平面ABCD,PD=2,AD=4 (1)求证:AC⊥平面PBD (2)求点D到平面PA
、已知P为二面角 内一点,P到平面 的距离为PA=2 ,P到平面 的距离为PB=4,点P到棱a的距离为 ,求二面角 的度
在边长为a的菱形ABCD中,角ABC=60度,PC垂直面ABCD.E,F分别是PA和AB的中点.求:EF//平面PBC,
如图,ABCD是菱形,PA垂直平面ABCD,PA=AD=2,∠BAD=60度,(1)证明:平面PBD垂直平面PAC(已会
平面α内有一个菱形ABCD,AB=6,角BAD=60度,PA垂直于α,PA=10,求P到BD的距离