关于正交性的线性代数
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:02:03
关于正交性的线性代数
证明: 必要性:
因为 v∈W⊥
所以 v 与 W 中任一元素正交,
而 w1,w2,...,wp 是W中元素.
所以 v 与 w1,w2,...,wp 都正交.
即v与S中所有向量都正交.
充分性:
因为v与S中所有向量都正交
所以 (v,wi) = 0, i=1,2,...,p.
而W是由S生成的子空间
所以W中任一向量都是S中向量的线性组合.
设 u = k1w1+k2w2+...+kpwp ∈W
则 (v,u) = k1(v,w1)+k2(v,w2)+...+kp(v,wp) = 0.
即 v 与 W 中任一向量都正交.
所以 v∈W⊥.
因为 v∈W⊥
所以 v 与 W 中任一元素正交,
而 w1,w2,...,wp 是W中元素.
所以 v 与 w1,w2,...,wp 都正交.
即v与S中所有向量都正交.
充分性:
因为v与S中所有向量都正交
所以 (v,wi) = 0, i=1,2,...,p.
而W是由S生成的子空间
所以W中任一向量都是S中向量的线性组合.
设 u = k1w1+k2w2+...+kpwp ∈W
则 (v,u) = k1(v,w1)+k2(v,w2)+...+kp(v,wp) = 0.
即 v 与 W 中任一向量都正交.
所以 v∈W⊥.