设向量e,f是平面内一组基底,证明:λ1向量e+λ2向量f=向量0时,恒有λ1=λ2=0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 16:08:16
设向量e,f是平面内一组基底,证明:λ1向量e+λ2向量f=向量0时,恒有λ1=λ2=0
先补充一点,e,f应该是不共线的
另外因为我也不知道怎么打,就不打向量符号了,应该能看得懂的.
证明:
首先,∵λ1*e+λ2*f=0,∴λ1e=-λ2f
两边平方,可得λ1^2=λ2^2
原式两边平方得,λ1^2+λ2^2+2λ1λ2cosθ=0
∴2λ1^2=-2λ1λ2cosθ
∴λ1=-λ2cosθ
两边平方得,λ1^2=λ2^2*(cosθ)^2=λ1^2*(cosθ)^2 所以,λ1^2*(1-(cosθ)^2)=0
∵e,f不共线,∴(cosθ)^2≠1,λ1^2=0
∴λ1=λ2=0
另外因为我也不知道怎么打,就不打向量符号了,应该能看得懂的.
证明:
首先,∵λ1*e+λ2*f=0,∴λ1e=-λ2f
两边平方,可得λ1^2=λ2^2
原式两边平方得,λ1^2+λ2^2+2λ1λ2cosθ=0
∴2λ1^2=-2λ1λ2cosθ
∴λ1=-λ2cosθ
两边平方得,λ1^2=λ2^2*(cosθ)^2=λ1^2*(cosθ)^2 所以,λ1^2*(1-(cosθ)^2)=0
∵e,f不共线,∴(cosθ)^2≠1,λ1^2=0
∴λ1=λ2=0
设向量e,f是平面内一组基底,证明:λ1向量e+λ2向量f=向量0时,恒有λ1=λ2=0
设向量e1,向量e2是平面内的一组基底,证明:当λ1倍向量e1+λ2倍向量e2=0时恒有λ1=λ2=0
向量设e1,向量e2是平面内的一组基底,证明:当λ1倍向量e1+λ2倍向量e2=0时恒有λ1=λ2=0
如图所示,E,F分别是平面内的任意四边形ABCD两边AD,BC的中点,求证:向量EF=1/2(向量AB+向量BC)
E、F分别是平面内的任意四边形ABCD的两边AD,BC的中点,求证向量EF=2分之一1(AB向量+DC向量)
已知向量a,b是平面内两个单位向量,设向量c=λb,且向量|c|≠1,向量a(b-c)=0,则实数λ
已知向量a,b是平面内两个单位向量,设向量c=λa,且向量|c|≠1,向量a(b-c)=0,则实数λ的取值范围
平面向量基底证明如果证明一组已知向量为平面内所有向量的基底?
三角形ABC中,D、E、F分别是BC、CA、AB的中点,试证明:向量DA+向量EB+向量FC=向量0
设e1,e2是平面内一组基底,证明:当λ1e1+λ2e2=0时,恒有λ1=λ2=0
若O为平面内一点,A、B、C是平面上不共线三点,动点P满足向量OP=向量OA+λ(向量AB+1/2向量BC)λ∈(0,+
平面向量证明题设向量OA,向量OB不共线,P点在AB上.求证:向量OP=λ向量OA+μ向量OB且λ+μ=1,λ,μ属于R