如图,将一张矩形纸片ABCD沿AE折叠,点D落在BC边上点F处,如果AB=8,BC=10求CE的长
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:17:08
如图,将一张矩形纸片ABCD沿AE折叠,点D落在BC边上点F处,如果AB=8,BC=10求CE的长
求△EFC的面积
如图,将一张矩形纸片沿着AE折叠后,D点恰好落在BC边上的F上,已知AB=8cm,BC=10cm,求EC的长度.
考点:翻折变换(折叠问题).
分析:由四边形ABCD是矩形,可得BC=AD=10cm,∠B=∠C=∠D=90°,又由由折叠的性质可得:AF=AD=10cm,∠AFE=∠D=90°,利用勾股定理即可求得BF的长,继而可得FC的长,然后由△ABF∽△FCE,利用相似三角形的对应边成比例,即可求得EC的长度.
∵四边形ABCD是矩形,
∴BC=AD=10cm,∠B=∠C=∠D=90°,
由折叠的性质可得:AF=AD=1cm,∠AFE=∠D=90°,
∴BF=AF2−AB2
=6(cm),∠BAF+∠AFB=90°,∠AFB+∠EFC=90°,
∴∠BAF=∠EFC,FC=BC-BF=10-6=4(cm),
∴△ABF∽△FCE,
∴ AB/FC=BF/EC,
∴EC=3cm.
点评:此题考查了折叠的性质、矩形的性质、相似三角形的判定与性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.
考点:翻折变换(折叠问题).
分析:由四边形ABCD是矩形,可得BC=AD=10cm,∠B=∠C=∠D=90°,又由由折叠的性质可得:AF=AD=10cm,∠AFE=∠D=90°,利用勾股定理即可求得BF的长,继而可得FC的长,然后由△ABF∽△FCE,利用相似三角形的对应边成比例,即可求得EC的长度.
∵四边形ABCD是矩形,
∴BC=AD=10cm,∠B=∠C=∠D=90°,
由折叠的性质可得:AF=AD=1cm,∠AFE=∠D=90°,
∴BF=AF2−AB2
=6(cm),∠BAF+∠AFB=90°,∠AFB+∠EFC=90°,
∴∠BAF=∠EFC,FC=BC-BF=10-6=4(cm),
∴△ABF∽△FCE,
∴ AB/FC=BF/EC,
∴EC=3cm.
点评:此题考查了折叠的性质、矩形的性质、相似三角形的判定与性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.
如图,将一张矩形纸片ABCD沿AE折叠,点D落在BC边上点F处,如果AB=8,BC=10求CE的长
一张长方形纸片宽AB=8cm,长BC=10cm.现将纸片折叠,使顶点D落在BC边上的点F处(折痕为AE),求CF、CE的
如图,将一张矩形的纸片ABCD,沿AE折叠,使点D落在BC边上的F点处
如图,在矩形ABCD中,已知AD=10,AB=8,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,求CE的长
如图,沿AE折叠矩形,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm.求FC﹑CE的长.
一张长方形纸片宽AB=8cm,长BC=10cm.现将纸片折叠,使顶点D落在BC边上的点F处(折痕为AE),求BC的长.
一张长方形纸片宽AB=8cm,长BC=10cm,先将纸片折叠,使D点落在BC边上的点F处(折痕为AE),求CF的长
将一张长BC=20cm,宽AB=16cm的矩形纸片ABCD沿着直线AE折叠,点D恰好落在BC边上的F处.
如图,长方形ABCD中,AD=10,AB=8,将长方形ABCD沿AE折叠,点D恰好落在BC边上的F点,求E
一张长方形纸片宽AB=8cm,长BC=10cm,现将纸片折叠,使顶点D落在BC边上的点F处(折痕为AE),求EC的长.
如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边上的点F处,AE为折痕.已知AB=8,BC=10,求EC的长\
如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边上的点F处,AE为折痕.已知AB=8,BC=10,求EC的长.