作业帮 > 数学 > 作业

求定积分,在[-π/2,π/2],根号(cosx-(cosx)^3)dx

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 05:10:59
求定积分,在[-π/2,π/2],根号(cosx-(cosx)^3)dx
答案等于4/3,我老算不出来.我是这样算,先提取cosx公因式,然后1-cosx^2,
得cosx*sinx^2,再设x=cost,dx=dt/(-sinx),然后化简为-t^(1/2) dt,并把导函
数还原,这里之后,答案出问题了.
求定积分,在[-π/2,π/2],根号(cosx-(cosx)^3)dx
答案是正确的.你开始的变换也没有错,先提取cosx公因式,然后1-cosx^2,
得cosx*sinx^2,所以(sinx)的平方开根号之后应该加上绝对值,这时候就应该把积分区间分成两部分,一个是[-π/2,0] 另一个是[0,π/2],然后sinx^2就可以把绝对值去掉了,再根据t=cosx,dt=-sinxdx,此时积分区间也应随之变换,在进行求解就很简单能得到4/3了