求一f(x)的例子满足下面条件:函数f(x)在[a,b]上有定义且 |f(x)| 在[a,b]上可积,但f(x)在[a,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 01:12:15
求一f(x)的例子满足下面条件:函数f(x)在[a,b]上有定义且 |f(x)| 在[a,b]上可积,但f(x)在[a,b]上不可积.
求一个高数里的f(x)函数,
求一个高数里的f(x)函数,
你是需要f不R可积 还是不L可积
|f(x)| 在[0,1]上可积,但f(x)在[0,1]上R不可积
高数里的函数就更加简单了
在[0,1]上定义:f(x)=1,x是有理数;f(x)=-1,x是无理数
那么可以得到 |f(x)| 在[0,1]上可积,但f(x)在[0,1]上不可积
注意:f如果R可积,那么f的不连续点一定是有限个.
ps:
|f(x)| 在[0,1]上可积,但f(x)在[0,1]上L不可积(对R不可积的情况也适用)举一个例子吧
在[0,1]上,满足x-y是有理数的数我们放在同一个盒子里作为一个等价类
然后每个盒子里取出一个元素构成一个新的集合A
定义f(x)=1 x属于A; f(x)=-1,x不属于A
那么可以得到 |f(x)| 在[0,1]上可积,但f(x)在[0,1]上不可积
这个结论你要证明你只需要知道集合A是不可测的,再利用可积的定义就得到了f不可积
|f(x)| 在[0,1]上可积,但f(x)在[0,1]上R不可积
高数里的函数就更加简单了
在[0,1]上定义:f(x)=1,x是有理数;f(x)=-1,x是无理数
那么可以得到 |f(x)| 在[0,1]上可积,但f(x)在[0,1]上不可积
注意:f如果R可积,那么f的不连续点一定是有限个.
ps:
|f(x)| 在[0,1]上可积,但f(x)在[0,1]上L不可积(对R不可积的情况也适用)举一个例子吧
在[0,1]上,满足x-y是有理数的数我们放在同一个盒子里作为一个等价类
然后每个盒子里取出一个元素构成一个新的集合A
定义f(x)=1 x属于A; f(x)=-1,x不属于A
那么可以得到 |f(x)| 在[0,1]上可积,但f(x)在[0,1]上不可积
这个结论你要证明你只需要知道集合A是不可测的,再利用可积的定义就得到了f不可积
求一f(x)的例子满足下面条件:函数f(x)在[a,b]上有定义且 |f(x)| 在[a,b]上可积,但f(x)在[a,
定义在R上的函数f(x)满足f(0)=1,且对任意实数a,b有f(a-b)=f(a)-b(2a-b+1),求f(x)的解
已知定义在R上的函数f(x)满足:对于任意实数a,b,总有f(a+b)=f(a)+f(b).
定义在R上函数满足F(X)+F(X+1)+F(X+2)=0,X属于R,且F(1)=a,F(2)=b,F(3)=c,求F(
.定义在R上函数满足F(X)+F(X+1)+F(X+2)=0,X属于R,且F(1)=a,F(2)=b,F(3)=c,求F
定义在[-1,1]上的函数f(x)满足f(a)-f(b)/a-b>0,且f(1)=1 题在下面 在线等!
定义在R上的函数f(x)满足f(x)=0,f(x)+f(1-x)=1,f(x/5)=f(x)/2,且当0≤a<b≤1时,
为什么 定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b
定义在R上的非零函数f(x)对任意实数a,b均有f(a+b)=f(a)*f(b),且当x1
F(X)为定义在R上的函数,且对任意X属于R都满足:B[F(X+P)+F(X)]=A[1-F(X)+F(X+P)],这里
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1且对任意的a,b∈R有f(a+b)=f(a)*f(b
设f(x)是定义在实数R上的函数.满足f(0)=1且对任意实数ab都有f(a)-f(a-b)=b(2a-b+1),则f(