作业帮 > 数学 > 作业

数列求和sn=(x+1/x)^2+(x^2+1/x^2)^2+……(x^n+1/x^n)^2

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 16:35:40
数列求和sn=(x+1/x)^2+(x^2+1/x^2)^2+……(x^n+1/x^n)^2
数列求和sn=(x+1/x)^2+(x^2+1/x^2)^2+……(x^n+1/x^n)^2
当x=±1时,Sn=4n
当x≠±1时,
Sn=(x^2 +2 +1/x^2)+(1/x^4 +2 +1/x^4)+……+[x^(2n) +2 +1/x^(2n)]
=[x^2 +x^4 +……+x^(2n)] +2n +[1/x^2 +1/x^4 +……+1/x^(2n)]
=[x^2 -x^(2n+2)]/(1-x^2) +(1- 1/x^(2n))/(x^2 -1) +2n
=[x^(2n+2) -x^2 +1]/(x^2 -1) - 1/[x^(2n) (x^2 -1)] +2n
再问: 为什么是=(x^2 +2
再答: (x+1/x)^2 =x^2 + 2*x*1/x +(1/x)^2 =x^2 +2 +1/x^2