数列求和sn=(x+1/x)^2+(x^2+1/x^2)^2+……(x^n+1/x^n)^2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 16:35:40
数列求和sn=(x+1/x)^2+(x^2+1/x^2)^2+……(x^n+1/x^n)^2
当x=±1时,Sn=4n
当x≠±1时,
Sn=(x^2 +2 +1/x^2)+(1/x^4 +2 +1/x^4)+……+[x^(2n) +2 +1/x^(2n)]
=[x^2 +x^4 +……+x^(2n)] +2n +[1/x^2 +1/x^4 +……+1/x^(2n)]
=[x^2 -x^(2n+2)]/(1-x^2) +(1- 1/x^(2n))/(x^2 -1) +2n
=[x^(2n+2) -x^2 +1]/(x^2 -1) - 1/[x^(2n) (x^2 -1)] +2n
再问: 为什么是=(x^2 +2
再答: (x+1/x)^2 =x^2 + 2*x*1/x +(1/x)^2 =x^2 +2 +1/x^2
当x≠±1时,
Sn=(x^2 +2 +1/x^2)+(1/x^4 +2 +1/x^4)+……+[x^(2n) +2 +1/x^(2n)]
=[x^2 +x^4 +……+x^(2n)] +2n +[1/x^2 +1/x^4 +……+1/x^(2n)]
=[x^2 -x^(2n+2)]/(1-x^2) +(1- 1/x^(2n))/(x^2 -1) +2n
=[x^(2n+2) -x^2 +1]/(x^2 -1) - 1/[x^(2n) (x^2 -1)] +2n
再问: 为什么是=(x^2 +2
再答: (x+1/x)^2 =x^2 + 2*x*1/x +(1/x)^2 =x^2 +2 +1/x^2
数列求和 Sn=x+2x^2+3x^3+…+nx^n(x≠-1)
数列求和sn=(x+1/x)^2+(x^2+1/x^2)^2+……(x^n+1/x^n)^2
错位相减法数列求和Sn=x+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
数列求和:Sn=x+2x^2+3x^3+…nx^n
求和:Sn=1+3x+5x*x+7x*x*x+……+(2n-1)x^n-1 (x不为0和1)
求和:Sn=1+3x+5x+7x+…+﹝2n-1﹞x^n-1
\求和Sn=1+2x+3x^2+```+(n-1)x^(n-2)+n*x^(n-1)
求和:Sn=1-3x+5x^2-7x^3+.+(2n+1)(-x)^n(n属于N*)
求和Sn=1+2x+3x^2+4x^3+5x^4……+nx^n-1
求和:Sn=1+3x+5x+7x+...+(2n-1)x^(n-1)谢谢了,
[数列求和] 1+2x+3x^2+……+nx^n-1=()?
求和:Sn=1+3x+5x2+7x3+…+(2n-1)x(n-1)