作业帮 > 数学 > 作业

观察下列各式:1²+(1*2)²+2²=9=3²2²+(2*3)&su

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 16:15:33
观察下列各式:
1²+(1*2)²+2²=9=3²
2²+(2*3)²+3²=49=7²
3²+(3*4)²+4²=169=13²
……
(1)请写出第五个等式
(2)你发现了什么规律?用含有n的等式表示出来.(n为正整数)
观察下列各式:1²+(1*2)²+2²=9=3²2²+(2*3)&su
1^2+(1*2)^2+2^2=9=3^2
2^2+(2*3)^2+3^2=49=7^2
3^2+(3*4)^2+4^2=169=13^2
(1)请写出第五个等式
5^2+(5*6)^2+6^2=961=31^2
(2)你发现了什么规律?用含有n的等式表示出来.(n为正整数)
n^2 + [n*(n+1)]^2 + (n+1)^2 = [n*(n+1)+1]^2
很明显等式成立.
因为右式[n*(n+1)+1]^2展开为
[n*(n+1)+1]^2 = [n*(n+1)]^2 +2n(n+1) +1
= [n*(n+1)]^2 +2n^2+2n +1
= [n*(n+1)]^2 +(n^2+2n +1)+n^2
= [n*(n+1)]^2 +(n+1)^2+n^2
= 左式