数列与不等式求证:n<(k=1,n)∑√(1+(1/k²)+(1/(k+1)²))<n+1.(n∈N
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 17:02:30
数列与不等式
求证:n<(k=1,n)∑√(1+(1/k²)+(1/(k+1)²))<n+1.(n∈N+)
求证:n<(k=1,n)∑√(1+(1/k²)+(1/(k+1)²))<n+1.(n∈N+)
1+ 1/k²+ 1/(k+1)²
=[k²(k+1)²+(k+1)²+k²]/[k²(k+1)²]
=[k²(k+1)²+2k²+2k+1]/[k²(k+1)²]
=[k²(k+1)²+2k(k+1)+1]/[k²(k+1)²]
=[k(k+1)+1]²/[k(k+1)]²
√[1+ 1/k²+ 1/(k+1)²]
=√[k(k+1)+1]²/[k(k+1)]²
=[k(k+1)+1]/[k(k+1)]
=1+ 1/[k(k+1)]
=1+ 1/k -1/(k+1) /关键就是化简,剩下的就非常简单了.
n
∑ √[1+ 1/k²+ 1/(k+1)²]
k=1
=1+1-1/2+1+1/2-1/3+...+1+1/n -1/(n+1)
=n+[1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=n+1 -1/(n+1)
1/(n+1)>0 n+1- 1/(n+1)n
k=1
综上,得
n
n< ∑ √[1+ 1/k²+ 1/(k+1)²]
=[k²(k+1)²+(k+1)²+k²]/[k²(k+1)²]
=[k²(k+1)²+2k²+2k+1]/[k²(k+1)²]
=[k²(k+1)²+2k(k+1)+1]/[k²(k+1)²]
=[k(k+1)+1]²/[k(k+1)]²
√[1+ 1/k²+ 1/(k+1)²]
=√[k(k+1)+1]²/[k(k+1)]²
=[k(k+1)+1]/[k(k+1)]
=1+ 1/[k(k+1)]
=1+ 1/k -1/(k+1) /关键就是化简,剩下的就非常简单了.
n
∑ √[1+ 1/k²+ 1/(k+1)²]
k=1
=1+1-1/2+1+1/2-1/3+...+1+1/n -1/(n+1)
=n+[1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=n+1 -1/(n+1)
1/(n+1)>0 n+1- 1/(n+1)n
k=1
综上,得
n
n< ∑ √[1+ 1/k²+ 1/(k+1)²]
数列与不等式求证:n<(k=1,n)∑√(1+(1/k²)+(1/(k+1)²))<n+1.(n∈N
求数分大神lim(n→∞)∑(k=1→n)√((n+k)(n+k+1)/n^4)
求证:lim1^k+2^k+3^k+4^k+.n^k/n^(k+1)=1/k+1
求和证明不等式求证∑k=2(1/k-ln1/k)>(n-1)/2(n+1).其中k=5是在∑下面,上面是n
用数学归纳法证明“1+12+13+…+12n−1<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+
试证明 x/[n(n+k)]=(x/k)[1/n-1/(n+k)]
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n]a[n+1])^1/2 已知a1=0 k属于N 求证a
已知k∈N,求证:k²+k²(k+1)²+(k+1)是一个完全平方数
利用数学归纳法证明不等式1+12+13+…+12n-1<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,
请问1^k+2^k+3^k+.+n^k=?
数列极限 lim[kn^2/n-n^2/(n+1)-n^2/(n+2)-...-n^2/(n+k)]
求极限lim(n→∞)∑(k=1,n)k/(n^2+n+k)详细过程