作业帮 > 数学 > 作业

设抛物线y^2=2px(p>0),(1)求证.过焦点F倾斜角为a的弦长为2p/sin^2a.(2) 如果他的动弦AB长为

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 08:42:54
设抛物线y^2=2px(p>0),(1)求证.过焦点F倾斜角为a的弦长为2p/sin^2a.(2) 如果他的动弦AB长为8p.当AB的重点Q到Y轴的距离最小时,求AB的倾斜角和点Q到Y轴的最小距离,
写一下第二小题就好了 思路也行..
设抛物线y^2=2px(p>0),(1)求证.过焦点F倾斜角为a的弦长为2p/sin^2a.(2) 如果他的动弦AB长为
这道题可以这样做,就十分简单了
设准线为L
PQ中点为M,过P、Q、M分别向直线L引垂线,垂足为A、B、N
当PQ的中点M到y轴的距离最小时
也是MN最小的时候(这步很关键)
由梯形中位线定理:MN=0.5(AP+BQ)=0.5(PF+QF) (F为抛物线焦点)
而PF+QF≥PQ=8p
所以当F在PQ上时,MN有最小值,最小值为0.5PQ=4p
此时PQ的中点M到y轴的距离最小,为4p-0.5p=3.5p
所以P、Q过焦点F
后面的工作就自己完成吧,最快的是套焦点弦长公式d=2p/sin^θ
θ为倾斜角
所以2p/sin^θ=8p ,sin^θ=1/4 ,sinθ=0.5 ,θ=30度或150度