菱形的习题,已知菱形ABCD,对角线AC=18,BD=24,DE垂直BC的延长线与点E,求DE的长完整的解决步骤,详细的
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 18:34:25
菱形的习题,
已知菱形ABCD,对角线AC=18,BD=24,DE垂直BC的延长线与点E,求DE的长
完整的解决步骤,详细的思路分析,OK?
图看不清可以点击一下放大,要带有∵、∴的证明过程的答案
已知菱形ABCD,对角线AC=18,BD=24,DE垂直BC的延长线与点E,求DE的长
完整的解决步骤,详细的思路分析,OK?
图看不清可以点击一下放大,要带有∵、∴的证明过程的答案
你好这个题的答案是DE=72/5
由于这个题不是证明题,所以不用写∵、∴,直接求解就可以了.
(思路.根据DE同时在直角三角形BDE和直角三角形DEC中.直接使用两次勾股定理就可以求得)
根据勾股定理可求出菱形ABCD的边长,也就是
CD=15
在△CDE中根据勾股定理:
CE=(CD的平方-DE的平方)开根号
在△BDE中:
CE=BE-BC,
而BE=(BD的平方-DE的平方)开根号
求解这两个方程组就可以了,可以解得DE=72/5
(此题的方程组的解答技巧,DE的平方和CE的平方作为一个整体,不要拆开求解,那样会很麻烦.直接把它作为一个整体用15是我平方替换掉.过程很方便的)
由于这个题不是证明题,所以不用写∵、∴,直接求解就可以了.
(思路.根据DE同时在直角三角形BDE和直角三角形DEC中.直接使用两次勾股定理就可以求得)
根据勾股定理可求出菱形ABCD的边长,也就是
CD=15
在△CDE中根据勾股定理:
CE=(CD的平方-DE的平方)开根号
在△BDE中:
CE=BE-BC,
而BE=(BD的平方-DE的平方)开根号
求解这两个方程组就可以了,可以解得DE=72/5
(此题的方程组的解答技巧,DE的平方和CE的平方作为一个整体,不要拆开求解,那样会很麻烦.直接把它作为一个整体用15是我平方替换掉.过程很方便的)
菱形的习题,已知菱形ABCD,对角线AC=18,BD=24,DE垂直BC的延长线与点E,求DE的长完整的解决步骤,详细的
如图所示,已知菱形ABCD的对角线AC=16cm,BD=12cm,DE垂直BC于点E.求DE的长
O是菱形ABCD两对角线的交点,AC=16cm,AB=10cm,DE垂直BC,垂足为点E求BD长
如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过点D作DE∥AC交BC的延长线于点E.求△BD
如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,过D点作DE品行AC交BC的延长线于点E.求△B
菱形ABCD中,对角线AC=16cm,BD=12cm,DE⊥BC于点E,则DE的长为______.
在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E,若BE=30cm,求DE的长
如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,过D点作DE品行AC交BC的延长线于点E
如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,.过点D作DE∥AC交BC的延长线于点E.
如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,过D点作DE‖AC交BC的延长线于点E.
已知:如图,菱形ABCD的对角线AC与BD交于点O,延长线BA到点E,使AE=1/2AB,连接OE、DE,并延长DE交C
已知菱形ABCD的对角线相交于o点,AC=16cm,BD=12cm,求菱形ABCD的周长和高DE