f(x)、g(x)在同一区间上为单调函数,有如下四种结论:
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:55:05
f(x)、g(x)在同一区间上为单调函数,有如下四种结论:
(1)若f(x)是增函数,g(x)为增函数,则f(x)+g(x)为增函数.
(2)若f(x)是减函数,g(x)为减函数,则f(x)-g(x)为减函数.
(3)若f(x)是减函数,g(x)为增函数,则f(x)-g(x)为减函数
(4)若f(x)是增函数,g(x)为减函数,则f(x)-g(x)为增函数
以正确的是什么呢?跟我说下为什么啊
答案是1、3、4,为什么
(1)若f(x)是增函数,g(x)为增函数,则f(x)+g(x)为增函数.
(2)若f(x)是减函数,g(x)为减函数,则f(x)-g(x)为减函数.
(3)若f(x)是减函数,g(x)为增函数,则f(x)-g(x)为减函数
(4)若f(x)是增函数,g(x)为减函数,则f(x)-g(x)为增函数
以正确的是什么呢?跟我说下为什么啊
答案是1、3、4,为什么
设X1<X2,在该区间上,
若 f(x)是增函数,g(x)为增函数,则
f(x2)>f(x1) g(x2)>g(x1)
∴f(x2)+g(x2)>f(x1)+g(x1)
∴f(x)+g(x)为增函数.
若f(x)是减函数,g(x)为增函数
f(x1)>f(x2),g(x2)>g(x1)
∴f(x1)-g(x1)>f(x2)-g(x2)
∴则f(x)-g(x)为减函数.
若f(x)是增函数,g(x)为减函数 ,则
f(x2)>f(x1),g(x1)>g(x2)
∴f(x2)-g(x2)>f(x1)-g(x1)
∴f(x)-g(x)为增函数
若 f(x)是增函数,g(x)为增函数,则
f(x2)>f(x1) g(x2)>g(x1)
∴f(x2)+g(x2)>f(x1)+g(x1)
∴f(x)+g(x)为增函数.
若f(x)是减函数,g(x)为增函数
f(x1)>f(x2),g(x2)>g(x1)
∴f(x1)-g(x1)>f(x2)-g(x2)
∴则f(x)-g(x)为减函数.
若f(x)是增函数,g(x)为减函数 ,则
f(x2)>f(x1),g(x1)>g(x2)
∴f(x2)-g(x2)>f(x1)-g(x1)
∴f(x)-g(x)为增函数
f(x)、g(x)在同一区间上为单调函数,有如下四种结论:
已知函数f(x)的定义域是R,且f(-x)=1/f(x)>0,若g(x)=f(x)+c(c为常数)在区间[a,b]上单调
已知函数f(x),g(x)在同一区间,f(x)是增函数,g(x)是减函数,且g(x)不等于0,那么在这个区间上( )
函数f(x)在[0,+无穷大)上单调递减,则f[根号(1-x^2)]的单调递减区间为?
若函数f(x)=sinx+g(x)在区间[−π4,3π4]上单调递增,则函数g(x)的表达式为( )
函数f(x)=(a-1)x+2在R上单调递增,则函数g(x)=a的|x-2|次方的单调递减区间是
函数f(x)=x-2sinx在(0,π)上的单调增区间为 ______
已知函数g(x)=x/lnx,f(x)=g(x)-ax.1.求g(x)的单调区间 2.若函数f(x)在(1,正无穷)为减
已知函数f(x)是定义在(0,+∞)上的增函数 则函数f(-x^2+5x+6)的单调区间为?
求证:函数f(x)=x+1/x在区间(0,1]上是单调减函数,在区间[0,+∞)上是单调增函数
求证:函数f(x)=x+x分之一在区间(0,1]上是单调减函数,在区间[1,+∞)上是单调增函数
求证函数f(x)=x+1/x在区间(0,1]上是单调减函数在区间[1,正无穷)上是单调增函数