设L为椭圆 x^2除以4加上y^2除以3等于1,其周长为a,则曲线积分∮(3x^2+4y^2-2)ds
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:44:45
设L为椭圆 x^2除以4加上y^2除以3等于1,其周长为a,则曲线积分∮(3x^2+4y^2-2)ds
因为椭圆方程为
x^2/4+y^2/3=1
也即3x^2+4y^2=12
则曲线积分∮(3x^2+4y^2-2)ds
=∮(12-2)ds
=10∮ds
=10a
再问: 这类曲线积分中ds与dx和dy用什么不同,遇到这类题如何下手,是不是针对曲线积分中的ds指的是曲线的周长
再答: ds=√[(dx)^2+(dy)^2]=√(1+y'^2)dx=√[1+(1/y')^2]dy ds是弧微分,与横坐标的微分dx和纵坐标的微分dy都不同。 一般dx和dy这样的坐标积分都比较好解,因为可以把dy换成y'dx的形式,然后只对x进行积分。 而弧微分ds也可以通过ds=√(1+y'^2)dx化成只含dx的形式,然后再对x进行积分。
再问: 你 能对这道题的ds的具体步骤解答一下吗
再答: 这道题的ds是可以化成dx的,但是这是一个椭圆积分,没有解析解,化出来后也无法直接积出。所以本题才说椭圆的周长是a。我们知道椭圆的面积是πab,但是椭圆的周长却没有解析解,只有近似解。椭圆周长的近似解网上都有,表达式也很多,但只是近似。
再问: 我说的是针对这道题解题思路是什么,如何将ds进行替换求解,你的解题过程是什么
再答: 你没有看明白我的意思。这道题本身只能巧解,主要考察对封闭曲线积分几何意义的理解。对曲线积分而言,被积函数上的坐标值必须满足曲线方程,所以才有3x^2+4y^2-2=12-2=10。而∮ds表示对每段微弧进行积分,也就是每段微弧长度相加,自然就表示封闭曲线的周长。 3x^2+4y^2=12 6x+8yy'=0 y'=-3x/(4y) ds=√(1+y'^2)dx=√[1+9x^2/(16y^2)]dx=√[1+9x^2/(48-9x^2)]dx=√[1+3x^2/(16-3x^2)]dx 如果直接对ds进行替换,得到的是 ∮(3x^2+4y^2-2)ds=10∮ds=10∮√[1+3x^2/(16-3x^2)]dx =20∫(0,2) √[1+3x^2/(16-3x^2)]dx+20∫(2,0) √[1+3x^2/(16-3x^2)](-dx) =40∫(0,2) √[1+3x^2/(16-3x^2)]dx 下面已经积不出来了。
x^2/4+y^2/3=1
也即3x^2+4y^2=12
则曲线积分∮(3x^2+4y^2-2)ds
=∮(12-2)ds
=10∮ds
=10a
再问: 这类曲线积分中ds与dx和dy用什么不同,遇到这类题如何下手,是不是针对曲线积分中的ds指的是曲线的周长
再答: ds=√[(dx)^2+(dy)^2]=√(1+y'^2)dx=√[1+(1/y')^2]dy ds是弧微分,与横坐标的微分dx和纵坐标的微分dy都不同。 一般dx和dy这样的坐标积分都比较好解,因为可以把dy换成y'dx的形式,然后只对x进行积分。 而弧微分ds也可以通过ds=√(1+y'^2)dx化成只含dx的形式,然后再对x进行积分。
再问: 你 能对这道题的ds的具体步骤解答一下吗
再答: 这道题的ds是可以化成dx的,但是这是一个椭圆积分,没有解析解,化出来后也无法直接积出。所以本题才说椭圆的周长是a。我们知道椭圆的面积是πab,但是椭圆的周长却没有解析解,只有近似解。椭圆周长的近似解网上都有,表达式也很多,但只是近似。
再问: 我说的是针对这道题解题思路是什么,如何将ds进行替换求解,你的解题过程是什么
再答: 你没有看明白我的意思。这道题本身只能巧解,主要考察对封闭曲线积分几何意义的理解。对曲线积分而言,被积函数上的坐标值必须满足曲线方程,所以才有3x^2+4y^2-2=12-2=10。而∮ds表示对每段微弧进行积分,也就是每段微弧长度相加,自然就表示封闭曲线的周长。 3x^2+4y^2=12 6x+8yy'=0 y'=-3x/(4y) ds=√(1+y'^2)dx=√[1+9x^2/(16y^2)]dx=√[1+9x^2/(48-9x^2)]dx=√[1+3x^2/(16-3x^2)]dx 如果直接对ds进行替换,得到的是 ∮(3x^2+4y^2-2)ds=10∮ds=10∮√[1+3x^2/(16-3x^2)]dx =20∫(0,2) √[1+3x^2/(16-3x^2)]dx+20∫(2,0) √[1+3x^2/(16-3x^2)](-dx) =40∫(0,2) √[1+3x^2/(16-3x^2)]dx 下面已经积不出来了。
设L为椭圆 x^2除以4加上y^2除以3等于1,其周长为a,则曲线积分∮(3x^2+4y^2-2)ds
设L为椭圆x^2/3+y^2/4=1,其周长为a,求∮(2xy+4x^2+3y^2)ds.
设C为椭圆X^2/2+Y^2/4=1,其周长记为a,则曲线积分I=∮c(3xy+4x^2+2y^2)ds的值是____
设l为曲线x^2/4+y^2/3=1,其周长为a,计算曲线积分
设L为椭圆X^2+Y^2/2=1,其周长为a,则曲线积分∮L(2X^2+XY+Y^2)dxdy=?
设L为椭圆x^2/4+y^2/3=1,并且其周长为s,则∮L(3x^2+4y^2+12)ds=中的3x^2+4y^2为什
曲线L为x^2+y^2=9,则曲线积分∫(x^2+y^2)ds=?
设l是从a(1,0)到b(-1,2)的线段,则曲线积分∫L(x+y)ds
计算曲线积分(x^2+y)ds,其中L是以O(0,0),A(1,0),B(0,1)为顶点三角形边界
求曲线积分∫(x+y)ds,其中L为曲线弧x=t,y=t^3,z=3t^2/√2(0<t<1)
已知椭圆方程为的X平方除以4加Y的平方除以M等于1,A=2C,则M=?
求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2