如图,在边长为1的正方形ABCD的各边上,截取AE=BF=CG=DH=x,连接AF、BG、CH、DE构成四边形PQRS.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:25:23
如图,在边长为1的正方形ABCD的各边上,截取AE=BF=CG=DH=x,连接AF、BG、CH、DE构成四边形PQRS.用x的代数式表示四边形PQRS的面积S.则S=______.
∵四边形ABCD是正方形,
∴AD=CD=BC=AB,∠EAD=∠HDC=∠GCB=∠FBA=90°,
∵AE=BF=CG=DH,
∴△EAD≌△FBA≌△GCB≌△HDC(SAS),
∴∠EAP=∠HDE=∠FBQ=∠HCD,
∴∠QPS=∠ADE+∠DAP=∠BAF+∠DAP=∠BAD=90°,
同理∠PSR=90°∠SRQ=90°,
∴四边形PSRQ是矩形,
∵∠HSD=∠GRC=∠APE=∠BQF=90°,∠GCR=∠HDS=∠EAP=∠QBF,CG=HD=AE=BF,
∴△CGR≌△BFQ≌△AEP≌△DHS,
∴CR=DS=AP=BQ,GR=HS=EP=QF,
∵△EAD≌△FBA≌△GCB≌△HDC,
∴DE=AF=BG=CH,
∴SR=SP,
∴矩形SPQR是正方形,
又∵S△ADE=x/2,
设△DHS的面积是a,设四边形HSPA的面积是b,
CH∥AF,
∴△DSH∽△DPA,
∴
a
a+b=
x2
12,
∴
a
b=
x2
1−x2,
∴a=
x2
1−x2b,
S△AED=
1
2x=2a+b=
1+x2
1−x2b,
∴b=
x(1−x2)
2(1+x2),
a+b=
x
2(1+x2),
∴S四边形PQRS=1×1-4(a+b)=
(1−x)2
1+x2,
故答案为:
(1−x)2
1+x2.
∴AD=CD=BC=AB,∠EAD=∠HDC=∠GCB=∠FBA=90°,
∵AE=BF=CG=DH,
∴△EAD≌△FBA≌△GCB≌△HDC(SAS),
∴∠EAP=∠HDE=∠FBQ=∠HCD,
∴∠QPS=∠ADE+∠DAP=∠BAF+∠DAP=∠BAD=90°,
同理∠PSR=90°∠SRQ=90°,
∴四边形PSRQ是矩形,
∵∠HSD=∠GRC=∠APE=∠BQF=90°,∠GCR=∠HDS=∠EAP=∠QBF,CG=HD=AE=BF,
∴△CGR≌△BFQ≌△AEP≌△DHS,
∴CR=DS=AP=BQ,GR=HS=EP=QF,
∵△EAD≌△FBA≌△GCB≌△HDC,
∴DE=AF=BG=CH,
∴SR=SP,
∴矩形SPQR是正方形,
又∵S△ADE=x/2,
设△DHS的面积是a,设四边形HSPA的面积是b,
CH∥AF,
∴△DSH∽△DPA,
∴
a
a+b=
x2
12,
∴
a
b=
x2
1−x2,
∴a=
x2
1−x2b,
S△AED=
1
2x=2a+b=
1+x2
1−x2b,
∴b=
x(1−x2)
2(1+x2),
a+b=
x
2(1+x2),
∴S四边形PQRS=1×1-4(a+b)=
(1−x)2
1+x2,
故答案为:
(1−x)2
1+x2.
如图,在边长为1的正方形ABCD的各边上,截取AE=BF=CG=DH=x,连接AF、BG、CH、DE构成四边形PQRS.
如图,在边长为1的正方形ABCD的各边上,截取AE=BF=CG=DH=x,连接AF、BG、CH、DE构成四边形PQRS.
在边长为1的正方形ABCD各边上截取AE,BF CG,DH,长度都为X连接AF,BG,CH,DE,构成四边形PQRS用X
在正方形ABCD的各边上截取AE=BF=CG=DH,连接AF、BG、CH、DE,依次相交于N、Q、P、
在正方形ABCD的各边上截取AE=BF=CG=DH,连接AF、BG、CH、DE ,依次相交于N、Q
如图在正方形ABCD的各边上截取AE=BF=CG=DH,连接AF,BG,CH,DE,依次相交于点N,P,Q,M,求证四边
在正方形ABCD各边上截取AE=BF=CG=DH,连结AF、BG、CH、DE,依次相交于A`B`C`D`,证明:四边形A
在正方形ABCD各边上截取AE=BF=CG=DH,连结AF、BG、CH、DE,依次相交于N、P、Q、M,证明:四边形MN
如图,已知点E、F、G、H分别在正方形ABCD的各边上,且AE=BF=CG=DH,AF、BG、CH、DE分别相交于点A′
正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积为?
在正方形ABCD各边上一次截取AE=BF=CG=DH,连接EF,FG,GH,HE.试问四边形EFGH是否是正方形?
小明遇到这样一个问题:如图1,在边长为啊a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,