设函数f(x)=msinx+根号2cosx,(m为常数,且m>0),已知函数f(x)的最大值为2,(1)求函数f(x)的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 02:07:22
设函数f(x)=msinx+根号2cosx,(m为常数,且m>0),已知函数f(x)的最大值为2,(1)求函数f(x)的单调递减区间
(2)已知a,b,c是三角形ABC的三边,且b^2=ac.若f(B)=根号3,求B的值
(2)已知a,b,c是三角形ABC的三边,且b^2=ac.若f(B)=根号3,求B的值
(1)f(x)=msinx+√2cosx =√(m²+2){[m/√(m²+2)]sinx+[√2/√(m²+2)]cosx} =√(m²+2)sin(x+α)
其中cosα=m/√(m²+2),
sinα=√2/√(m²+2)
可见f(x)的最大值为√(m²+2)=2,
解得m=√2
所以原函数为 f(x)=√2sinx+√2cosx=2sin(x+π/4) 其单调减区间满足 π/2+2kπ≤x+π/4≤3π/2+2kπ,k∈Z
即减区间为 2kπ+π/4≤x≤2kπ+5π/4
(2)f(B)=√3,
则2sin(B+π/4)=√3
所以B+π/4=π/3
解得 B=π/3-π/4=π/12
其中cosα=m/√(m²+2),
sinα=√2/√(m²+2)
可见f(x)的最大值为√(m²+2)=2,
解得m=√2
所以原函数为 f(x)=√2sinx+√2cosx=2sin(x+π/4) 其单调减区间满足 π/2+2kπ≤x+π/4≤3π/2+2kπ,k∈Z
即减区间为 2kπ+π/4≤x≤2kπ+5π/4
(2)f(B)=√3,
则2sin(B+π/4)=√3
所以B+π/4=π/3
解得 B=π/3-π/4=π/12
设函数f(x)=msinx+根号2cosx,(m为常数,且m>0),已知函数f(x)的最大值为2,(1)
设函数f(x)=msinx+根号2cosx,(m为常数,且m>0),已知函数f(x)的最大值为2,(1)求函数f(x)的
设函数f(x)=msinx+根号2cosx,(m为常数,且m大于0)已知函数f(x)=的最大值为2.(1)求函数f(x)
设函数f(x)msinx √2cosx,(m为常数,且m>0),已知函数f(x)的最大值...
已知函数f(x)=msinx 根号2cosx.(m>0)的最大值为2
已知函数f x=msinx+(根号下2)cosx (m>0)的最大值为2.
已知函数f(x)=msinx+√2cosx(m>0)的最大值为2
已知函数f(x)=msinx 根号2cosx.(m>0)的最大值为2求函数f(x)在[0,兀]上的单调减区间
设关于X的函数f(x)=-cosx²-2msinx+m²+2m的最小值是m的函数,记为g(m)
若函数f(x)=cos^2x+2msinx-2m-1(0《x《π)的最大值为3,求m的值
设函数f(X)是奇函数,且在R上为增函数,若0≤x≤∏/2时,f(msinx)+f(1-m)>0恒成立,求m的取值范围
设函数f(X)=2x+sinx-根号3cosx,已知函数f(x)的图像在M(x0,f(x0))处的切线斜率为2