构造康托尔集的时候,挖掉的开区间为什么是可数个?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 19:14:15
构造康托尔集的时候,挖掉的开区间为什么是可数个?
如题,课本上说挖掉的开区间个数是可数的.每挖掉一个开区间,剩下的闭区间就多一个.而剩下的闭区间可以和二进制实数一一对应,是不可数的.为什么挖掉的却是可数的?
如题,课本上说挖掉的开区间个数是可数的.每挖掉一个开区间,剩下的闭区间就多一个.而剩下的闭区间可以和二进制实数一一对应,是不可数的.为什么挖掉的却是可数的?
定理:若G是R中的开集,则G是至多可数个两两不相交的开区间的并(教材上有证明)
设G是所有挖掉的开区间的并,显然,G是其每一点的邻域,所以G是开集
且根据挖掉这些开区间的方法,这些开区间是两两不相交的
综上所述,这些组成G的所有开区间的个数是至多可数个
又因为已知这些开区间是可以无限挖下去的,所以是无限的
所以挖掉的个数是可数个
再问: 1、“设G是所有挖掉的开区间的并,显然,G是其每一点的邻域,所以G是开集。” 这里不懂。G为什么是开集。 2、我知道教材上应该是对的,但是不知道我的想法错在哪。
再答: 1、对任意x∈G=∪{挖掉的开区间} 必定存在一个被挖掉的开区间T,使得x∈T 不妨设这个开区间T=(a,b) a
设G是所有挖掉的开区间的并,显然,G是其每一点的邻域,所以G是开集
且根据挖掉这些开区间的方法,这些开区间是两两不相交的
综上所述,这些组成G的所有开区间的个数是至多可数个
又因为已知这些开区间是可以无限挖下去的,所以是无限的
所以挖掉的个数是可数个
再问: 1、“设G是所有挖掉的开区间的并,显然,G是其每一点的邻域,所以G是开集。” 这里不懂。G为什么是开集。 2、我知道教材上应该是对的,但是不知道我的想法错在哪。
再答: 1、对任意x∈G=∪{挖掉的开区间} 必定存在一个被挖掉的开区间T,使得x∈T 不妨设这个开区间T=(a,b) a