作业帮 > 数学 > 作业

已知双曲线的两条渐近线方程为直线l1:y=-x/2和l2:y=x/2,焦点在y轴上,实轴长为2√3,O为坐标原

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:52:19
已知双曲线的两条渐近线方程为直线l1:y=-x/2和l2:y=x/2,焦点在y轴上,实轴长为2√3,O为坐标原
(1)求双曲线的方程
(2)设P1、P2分别是直线l1和l2上的点,点M在双曲线上,且向量P1M=2向量MP2,求△P1OP2的面积
双曲线方程是x^2/a^2-y^2/b^2=1(a>0,b>0)
已知双曲线的两条渐近线方程为直线l1:y=-x/2和l2:y=x/2,焦点在y轴上,实轴长为2√3,O为坐标原
1.因为焦点在y轴上,且实轴长为2√3,故可设双曲线方程为y^/(2√3/2)^ -x^/b^=1,即y^/3 -x^/b^=1
而双曲线的渐近线方程是y=±0.5x,所以√3 /b=0.5,b=2√3
所以双曲线方程为y^/3 -x^/12=1
2.因为P1,P2分别在L1:y=-0.5x与L2:y=0.5x上,所以可设两点坐标分别为
P1(x1,-0.5x1),P2(x2,0.5x2)
而原点O的坐标为(0,0),于是可得向量OP1={x1,-0.5x1},向量OP2={x2,0.5x2}
于是向量OM=0.5*{x1+x2,0.5(x2-x1)}={(x1+x2)/2,(x2-x1)/4}
可得出M点坐标为((x1+x2)/2,(x2-x1)/4)
而M在双曲线上,故将M坐标代入双曲线方程:
[(x2-x1)^/4^]/3 - [(x1+x2)^/2^]/12 =1
化简可得到:x1*x2=-12 ①
S△P1OP2=|OP1|*|OP2|*sin∠P1OP2 /2
=(|OP1|*|OP2|*cos∠P1OP2) * tan∠P1OP2 /2
=(向量OP1 点乘 向量OP2)*tan∠P1OP2 /2
=(x1*x2-0.5x1* 0.5x2) *tan∠P1OP2 /2
=(3/8)*x1*x2 *tan∠P1OP2
将 ①式代入,可得:
S△P1OP2=(3/8)*(-12)*tan∠P1OP2=(-9/2)*tan∠P1OP2 ②
故问题的关键为求出∠P1OP2的正切值,需结合图像考虑
前方的 ①式中,x1*x2
再问: 太假了吧 这个我看过了 你专业点好吗 连问题都和我这个不一样就copy 动动脑子
再答: 第一问是一样的吧无非你写了个1/2人家写了个0.5 第二问没仔细看,觉得差不多 设P1(-2y1,y1)p2(-2y2,y2) M(X0,Y0) P1M=2P2M以及M在双曲线上 得到y1y2=27/8 S=1/2|OP1||OP2|*SIN(OP1,OP2) =1/2OP1点乘OP2*TAN(OP1,OP2) =1/2(-4y1y2+y1y2)*(-1/2-1/2)/(1-(-1/2)*1/2) =27/4
再问: 高手啊 S=1/2|OP1||OP2|*SIN(OP1,OP2) =1/2OP1点乘OP2*TAN(OP1,OP2) =1/2(-4y1y2+y1y2)*(-1/2-1/2)/(1-(-1/2)*1/2) 不过这两部分没明白 怎么正弦变正切的 还有数是怎么带的 谢谢
再答: 正弦变正切: OP1点乘OP2这个是指向量之间的乘积 OP1点乘OP2=|OP1||OP2|*cos夹角吧 所以相当于先乘cos角再除一个cos角,除的和原来的sin放一起正好是tan,tan又刚好斜率,所以用了个差的斜率公式