n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵.
n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵
n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵.
若n阶矩阵A满足A^2+2A+2E=O,证明:A+xE(其中x为任意实数)可逆,并求其逆矩阵的表达式.
|(kA)^(-1)|=k^(-n)|A|^(-1) (k不等于0为任意常数)此结论正确吗为什么,AB为N阶可逆矩阵
称满足A^2=A 的矩阵A为幂等矩阵.证明:任意m*n矩阵A都可分解为可逆矩阵P和幂等矩阵Q的乘积.
n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵
设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵
设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵.
n阶矩阵A,A^k=0,证E-A可逆,用特征值法证明.
设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵
设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵
设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆