已知数列{an}、{bn}都是公差不为零的等差数列,且liman/bn=3,求lim(b1+b2+……b3n)/(n*a
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 17:33:38
已知数列{an}、{bn}都是公差不为零的等差数列,且liman/bn=3,求lim(b1+b2+……b3n)/(n*a2n)
要liman/bn=3推出公差比为3的详细步骤
要liman/bn=3推出公差比为3的详细步骤
设{an}公差为d,{bn}公差为d'
lim(an/bn)
=lim[(a1+(n-1)d]/[b1+(n-1)d']
=lim[(a1-d)+nd]/[(b1-d')+nd']
=lim[(a1-d)/n +d]/[(b1-d')/n +d']
a1-d,b1-d'均为定值,n->+∞,(a1-d)/n->0 (b1-d')/n->0
lim(an/bn)=d/d',又lim(an/bn)=3,因此d/d'=3 以上即为得到公差比的详细步骤.
lim[(b1+b2+...+b3n)]/[n×a(2n)]
=lim[3nb1+3n(3n-1)d'/2]/[n×a(2n)]
=lim[3b1+3(3n-1)d'/2]/[a1+(2n-1)d]
=lim[6b1+3(3n-1)d']/[2a1+(4n-2)d]
=lim[(6b1-3d')+9nd']/[(2a1-2d)+4nd]
=lim[(6b1-3d')/n +9d']/[(2a1-2d)/n +4d]
=9d'/4d
=(9/4)[1/(d/d')]
=(9/4)(1/3)
=3/4
lim(an/bn)
=lim[(a1+(n-1)d]/[b1+(n-1)d']
=lim[(a1-d)+nd]/[(b1-d')+nd']
=lim[(a1-d)/n +d]/[(b1-d')/n +d']
a1-d,b1-d'均为定值,n->+∞,(a1-d)/n->0 (b1-d')/n->0
lim(an/bn)=d/d',又lim(an/bn)=3,因此d/d'=3 以上即为得到公差比的详细步骤.
lim[(b1+b2+...+b3n)]/[n×a(2n)]
=lim[3nb1+3n(3n-1)d'/2]/[n×a(2n)]
=lim[3b1+3(3n-1)d'/2]/[a1+(2n-1)d]
=lim[6b1+3(3n-1)d']/[2a1+(4n-2)d]
=lim[(6b1-3d')+9nd']/[(2a1-2d)+4nd]
=lim[(6b1-3d')/n +9d']/[(2a1-2d)/n +4d]
=9d'/4d
=(9/4)[1/(d/d')]
=(9/4)(1/3)
=3/4
已知数列{an}、{bn}都是公差不为零的等差数列,且liman/bn=3,求lim(b1+b2+……b3n)/(n*a
已知数列{An}与{Bn}都是公差不为零的等差数列,且limAn/Bn=3,求lim(B1+B2+……+B2n)/(n*
已知数列{An}与{Bn}都是公差不为零的等差数列,且limAn/Bn=2,求lim(A1+A2+……+An)/(n*B
设an,bn都是等差数列,其中a1=3,b1=2,b2是a2与a3的等差数列,liman/bn=1/2,求lim(1/a
已知{an}{bn}都是公差不为0的等差数列.且lim(n趋近无穷)an/bn=2.求lim(n趋近无穷)(a1+a2+
已知等差数列an的公差不为零,且a3=5,a1,a2,a5成等比数列.数列bn满足b1+2b2+4
设数列{an}{bn}均为等差数列,公差都不为0,无穷数列liman/bn=3,则无穷数列limb1+b2+...+bn
已知数列an=3的n-1次方,bn为等差数列,且a1+b1,a2+b2,a3+b3成等比,求数列bn的通项
求两数列的公差和公比在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=1,且a1=b1,a2=b2,a8=b
在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a6=b3; 求数列{an.bn}的
已知公差不为零的等差数列{an}与等比数列{bn}中,b1=a2=1,b2=a3,b3=a6 (1)求数列{an}{bn
已知数列{an},{bn}都是公差为1的等差数列,其首项分别为a1,b1,且a1+b1=5,a1,b1∈N*,设c