数集A满足:若a属于A,a≠1,则1-a分之一属于A.证明:集合A中至少有三个不同的元素 要证明
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 07:14:51
数集A满足:若a属于A,a≠1,则1-a分之一属于A.证明:集合A中至少有三个不同的元素 要证明
因为A是数集,所以A不为空
由题知,
a∈A,a≠1
则1/(1-a)∈A
若A为单元素集{a}
则a=1/(1-a) ,即a²-a+1=0,无解
所以A不为单元素集
若A为双元素集{a,1/(1-a)}
则由1/(1-a)∈A,1/(1-a)≠1
知(-1+a)/a∈A
即a=(-1+a)/a,即a²-a+1=0,无解
所以,A不为双元素集
若A为三元素集
A{a,1/(1-a),(-1+a)/a}
由(-1+a)/a∈A,(-1+a)/a≠1
知a∈A,成立
如{2,-1,1/2}
综上所述,集合A中至少有三个不同的元素
由题知,
a∈A,a≠1
则1/(1-a)∈A
若A为单元素集{a}
则a=1/(1-a) ,即a²-a+1=0,无解
所以A不为单元素集
若A为双元素集{a,1/(1-a)}
则由1/(1-a)∈A,1/(1-a)≠1
知(-1+a)/a∈A
即a=(-1+a)/a,即a²-a+1=0,无解
所以,A不为双元素集
若A为三元素集
A{a,1/(1-a),(-1+a)/a}
由(-1+a)/a∈A,(-1+a)/a≠1
知a∈A,成立
如{2,-1,1/2}
综上所述,集合A中至少有三个不同的元素
数集A满足:若a属于A,a≠1,则1-a分之一属于A.证明:集合A中至少有三个不同的元素 要证明
设A是数集,且满足条件:若P属于A,P不为1,则(1-P)分之1属于A,证明集合A中至少有三个不同元素.
高中集合的题目数集A满足:若a属于A,a≠1,则1/1-a属于A 1.求证:集合A不可能是单元素集 2.求证:集合A中至
集合A满足:若a属于A,a不等于1,则,1/(1-a)属于A,证明:若2属于A,则集合A中还有另外两个元素.
若a∈A,则1/(1—a)∈A(a≠1).证明集合A中至少有三个元素
集合A满足:若a属于A,a不等于1,则,1/(1-a)属于A,证明:若a属于R,则集合A不可能是单元素集.
集合A满足条件,若a属于A,a不等于1,则(1-a)分之1属于A,证明a分之(a-1)属于A
设集合A中的元素为实数,当a属于A时,1/1-a属于A,(1)证明:若a属于A,则1-1/a属于A(2)若2属于A,求集
数集A满足:若a∈A,则1/1-a∈A,(a≠0) 问(1):若5∈A,试求出A中其他所有元素.(2)证明集合A最多有
数集A满足:若a∈A,则1/1-a∈A,(a≠1),证明集合A最多有三个元素,且它们和为1
设集合A中的元素为实数,当a属于A时,1/1-a属于A.(1)证明若a属于A,则1- 1/a属于A (2)若2属于A,求
一个关于集合的问题.数集A满足条件:若a属于A,a不等于1,则1+a分之一属于A.若A为单元集,求出A和a.