作业帮 > 数学 > 作业

lim[m/(1-x^m)-n/(1-x^n)] x趋近于1 m、n为自然数

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:08:38
lim[m/(1-x^m)-n/(1-x^n)] x趋近于1 m、n为自然数
lim[m/(1-x^m)-n/(1-x^n)] x趋近于1 m、n为自然数
记1-x^m=(1-x)*F(m-1);1-x^n=(1-x)*F(n-1)
则[m/(1-x^m)-n/(1-x^n)] x=[m/(1-x)*F(m-1)-n/(1-x)*F(n-1)] x
=1/(1-x)[m/F(m-1)-n/F(n-1)]x
=x*(mF(n-1)-nF(m-1))/(1-x)F(m-1)F(n-1)
0/0型可以用罗必塔法则
有:[mF(n-1)-nF(m-1)+x*(mF'(n-1)-nF'(m-1))]/[-F(m-1)F(n-1)+(1-x)(F'(m-1)F(n-1)+F(m-1)F'(n-1))]
代入x=1,有分子化简为mn(n-m)/2;分母:-mn,所以结果是:(m-n)/2