如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 04:44:29
如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
求证:△CEF为等边三角形.
求证:△CEF为等边三角形.
证明:∵△ACM,△CBN是等边三角形
∴CM=CA CN=CB
∠MCA=∠NCB=60°
∴∠MCA+∠ACB=∠NCB+∠ACB
即∠MCB=∠ACN
在△BCM和△NCA中
{CB=CN
{∠BCM=∠NCA
{CM=CA
△BCM≌△NCA(SAS)
∴BM=NA
2):∵△ACM,△CBN是等边三角形
∴AC=CA,AN=BM,∠MCA=∠NCB=60
∴∠MCN=180-∠MCA-∠NCB=180-60-60=60
∴∠ACN=∠MCB=120
∴△ACN≌△MCB
∴∠NAC=∠BMC
∴△ACE≌△MCF
∴CE=CF
∴△CEF为正三角形
∴CM=CA CN=CB
∠MCA=∠NCB=60°
∴∠MCA+∠ACB=∠NCB+∠ACB
即∠MCB=∠ACN
在△BCM和△NCA中
{CB=CN
{∠BCM=∠NCA
{CM=CA
△BCM≌△NCA(SAS)
∴BM=NA
2):∵△ACM,△CBN是等边三角形
∴AC=CA,AN=BM,∠MCA=∠NCB=60
∴∠MCN=180-∠MCA-∠NCB=180-60-60=60
∴∠ACN=∠MCB=120
∴△ACN≌△MCB
∴∠NAC=∠BMC
∴△ACE≌△MCF
∴CE=CF
∴△CEF为正三角形
点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.
如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
如图甲,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线CN、MB交于点F。
如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线BM、
如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,CM交于点E,直线CN,BM交于点F,问:
如图,点C为线段AB上一点,△ACM,△CBN是 等边三角形,直线AN,MC交于点E,直线BM,C
如图,点C为线段AB上一点,△ACM与△CBN都是等边三角形,AN与MC交于点E,BM与CN交于点F,△CEF是什么形状
已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
13.已知:如图1,点C为线段AB上一点,△ACM、△CBN都是等边三角形,AN交MC于点E,BM交CN于点F
已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.求证:CE=CF