作业帮 > 数学 > 作业

已知实数x,y满足2x+3y=0,y>=0,则x^2+y^2-2y+10的最小值

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:57:40
已知实数x,y满足2x+3y=0,y>=0,则x^2+y^2-2y+10的最小值
已知实数x,y满足2x+3y=0,y>=0,则x^2+y^2-2y+10的最小值
2x+3y=0,画图,2x+3y=0在该线的右边,两个范围的重合部分就是x.y的可取值范围,是一个以两线交点(5/6,5/6)为顶点以下的三角区域.
x^2+y^2-2y+10=x^2+(y-1)^2+9,要求最小值,只要求x^2+(y-1)^2的最小值就可以了.这个式子是一个圆的表达式,值表示圆的半径的平方,圆心坐标是(0,1),只要求出圆心到三角区域最短距离作为半径,半径平方后加上9就是所求的最小值.
观察坐标图中的三角区域,发现只有圆心垂直于x=y,所得的垂线距离是最短的,垂线=根号2/2,即最短半径距离是根号2/2,代入原式,得到最短距离是19/2