证明:设I为三角形ABC内一点,I为三角形ABC内心的充要条件,角BIC=90度+二分之一角A,角AIC=90度+二分之
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:40:38
证明:设I为三角形ABC内一点,I为三角形ABC内心的充要条件,角BIC=90度+二分之一角A,角AIC=90度+二分之一角B
要详细证明,要两方面证明,既以 设I为三角形ABC内一点,I为三角形ABC内心 为条件 先证 角BIC=90度+二分之一角A,角AIC=90度+二分之一角B
再以角BIC=90度+二分之一角A,角AIC=90度+二分之一角B 为条件,证明设I为三角形ABC内一点,I为三角形ABC内心.
要详细证明,要两方面证明,既以 设I为三角形ABC内一点,I为三角形ABC内心 为条件 先证 角BIC=90度+二分之一角A,角AIC=90度+二分之一角B
再以角BIC=90度+二分之一角A,角AIC=90度+二分之一角B 为条件,证明设I为三角形ABC内一点,I为三角形ABC内心.
同一法是解决充要性命题的常用方法
解:(1)已知因为I是三角形ABC的内心,
所以角BIC=角ABI+角ACI+角BAC=1/2角B+1/2角C+角A=90度-1/2角A+角A=90度+1/2角A 角AIC=90度+1/2角B同理可证
(2)已知角BIC=90度+二分之一角A,角AIC=90度+二分之一角B
假设I不是三角形ABC的内心,不妨设内心为点T则做三角形BCT外接圆
因为角BIC=角BTC=90度+1/2角A(由(1)可知)
又根据圆的集合性意义可知点I在圆弧BTC上,即在三角形BCT外接圆上
同理可知点I在三角形ACT外接圆上
所以I是三角形BCT外接圆与三角形ACT外接圆的交点
因为A,T也是I是三角形BCT外接圆与三角形ACT外接圆的交点
所以与两圆最多有两个交点矛盾,所以I与T是同一点为内心,得证
希望我的回答对您有所帮助
解:(1)已知因为I是三角形ABC的内心,
所以角BIC=角ABI+角ACI+角BAC=1/2角B+1/2角C+角A=90度-1/2角A+角A=90度+1/2角A 角AIC=90度+1/2角B同理可证
(2)已知角BIC=90度+二分之一角A,角AIC=90度+二分之一角B
假设I不是三角形ABC的内心,不妨设内心为点T则做三角形BCT外接圆
因为角BIC=角BTC=90度+1/2角A(由(1)可知)
又根据圆的集合性意义可知点I在圆弧BTC上,即在三角形BCT外接圆上
同理可知点I在三角形ACT外接圆上
所以I是三角形BCT外接圆与三角形ACT外接圆的交点
因为A,T也是I是三角形BCT外接圆与三角形ACT外接圆的交点
所以与两圆最多有两个交点矛盾,所以I与T是同一点为内心,得证
希望我的回答对您有所帮助
证明:设I为三角形ABC内一点,I为三角形ABC内心的充要条件,角BIC=90度+二分之一角A,角AIC=90度+二分之
在三角形ABC中,I是内心,角BIC等于130度,则角A的度数为
在三角形ABC中,I是内心,角BIC=110度,则角A
已知点i为三角形abc的内心,如果角abc+角acb=100度,求角bic的度数.
已知AD是三角形ABC的角平分线,I是线段AD上的点,且角BIC等于90°加二分之一角BAC,求证:I是三角形ABC的内
三角形ABC中,角A等于50度,I是三角形ABC的内心,则角BIC等于多少度
已知点I为三角形ABC的内心,角BIC等于130度,则角BAC的度数是?
在三角形ABC中,I是内心,如果角A=50度,那么BIC=__度_
在三角形ABC中,I是角ABC和角ACB的角平分线的焦点,试说明角BIC=90度+2分之1角A.
在△ABC中,角A=70度,I是内心,则角BIC的度数为___
如图 点I是△ABC的内心,点O为三角形ABC的外心,若∠BOC=140度,求∠BIC的度数,急
已知三角形ABC中,∠A=55°,I为△ABC的内心,则∠BIC的度数为