函数在[0,2]连续,在[0,2]上可导,f(0)+f(1)=2,f(2)=1,证明至少存在一点使得f'(ζ)=0
函数在[0,2]连续,在[0,2]上可导,f(0)+f(1)=2,f(2)=1,证明至少存在一点使得f'(ζ)=0
设函数f(x)在区间【0,1】上可导,且f(1)=0,证明至少存在一点$在(0,1)内,使得2$f($)+$*$f'$)
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0 证明至少存在一点g∈(0,1)使得f’(g)=- 2f
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
关于函数连续证明fx在〔0,2]连续且f(2)=f(0),证明存在x2-x1=1使得f(x1)=f(x2).
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明:至少存在一点ξ∈(0,1),使得f
函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明;在[0,a]上至少存在一点使得f(x)=f(x+a)
设函数f(x)在[0,2兀]上连续,且f(0)=f(2兀),证明在[0,兀]上至少存在一点a使f(a)=f(a+兀)
f(0)=0,f(1)=1/2,函数在闭区间上连续,开区间上可导,证明存在a,b属于(0,1)使得f'(a)+f'(b)
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,试证明至少存在一点ζ∈(0,1),使f′(ζ)=-2f
设f(x)在[0,1]上连续,且f(0)=f(1)=1/2,证明对任何自然数n>0,在(0,1)内至少存在一点c,使得f
设f(x)在[0,1]上连续,在(0,1)内可导,证明至少存在一点§∈(0,1)使得f'(§)=2§[f(1)-f(0)