作业帮 > 数学 > 作业

求高数帝 :线性代数 AA*=A*A=|A|En 的证明

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:00:25
求高数帝 :线性代数 AA*=A*A=|A|En 的证明
线代中的定理2.5 对于任意n阶方针A=(a ij)n×n
有AA*=A*A=|A|En
证 先证明,对于不同的 i和 j有
ai1 Aj1+ai2 Aj2+...+ain Ajn = 0 i≠j
a1i A1j+a2i A2j+...+ani Anj = 0 i≠j
考虑将A=(aij)n×n 的第j行换成第i行得到的n阶行列式
|a11 a12 .a1n|
|...........|
|ai1 ai2 ......ain|
|..............|
|ai1 ai2......ain| 此行为第j行
|.............|
|an1 an2 .ann|
ij nn皆为下标
将其按第j行展开得 该行列式为0 (这句话不明白,为什么展开了就等于0)
求高数帝 :线性代数 AA*=A*A=|A|En 的证明
将A=(aij)n×n 的第j行换成第i行得到的n阶行列式B
则:cij=∑aikAjk=∑bjkAjk=|B|
因为 A第j行换成第i行得到B,所以B有两行相同的,所以|B|=0
也就是 cij ,如果i≠j.则有cij=0