一道均值不等式的证明题
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 10:26:29
一道均值不等式的证明题
设a>0,b>0,n∈N,求证:2[a^(n+1)+b^(n+1)]≥(a+b)(a^n+b^n).
最好用均值不等式证,那个次方符号应该没错吧
设a>0,b>0,n∈N,求证:2[a^(n+1)+b^(n+1)]≥(a+b)(a^n+b^n).
最好用均值不等式证,那个次方符号应该没错吧
2[a^(n+1)+b^(n+1)]≥(a+b)(a^n+b^n)等价于
2[a^(n+1)+b^(n+1)]≥a^(n+1)+b^(n+1)+ba^n+ab^n等价于
a^(n+1)+b^(n+1)≥ba^n+ab^n等价于
(a-b)a^n-(a-b)b^n≥0等价于
(a-b)(a^n-b^n)≥0(此式在a>0,b>0,n∈N时恒成立)
2[a^(n+1)+b^(n+1)]≥a^(n+1)+b^(n+1)+ba^n+ab^n等价于
a^(n+1)+b^(n+1)≥ba^n+ab^n等价于
(a-b)a^n-(a-b)b^n≥0等价于
(a-b)(a^n-b^n)≥0(此式在a>0,b>0,n∈N时恒成立)