数列an中,a1=1,an\an+1是关于X的方程 X平方—(2n+1)x+1/Bn=0的两根,则数列Bn的前n项和Sn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:34:50
数列an中,a1=1,an\an+1是关于X的方程 X平方—(2n+1)x+1/Bn=0的两根,则数列Bn的前n项和Sn是多少?
an\an+1是关于X的方程 X平方—(2n+1)x+1/Bn=0的两根
则由韦达定理a(n+1)+an=2n+1
a(n+1)-(n+1)=-1*[an-n]=(-1)^2*[a(n-1)-(n-1)=.=(-1)^n*(a1-1)=0
所以an=n
且an*a(n+1)=1/Bn
即Bn=1/[an*a(n+1)]=1/[n*(N=1)]=1/n-1/(n+1)
所以Sn=(1-1/2)+(1/2-1/3)+.+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)
则由韦达定理a(n+1)+an=2n+1
a(n+1)-(n+1)=-1*[an-n]=(-1)^2*[a(n-1)-(n-1)=.=(-1)^n*(a1-1)=0
所以an=n
且an*a(n+1)=1/Bn
即Bn=1/[an*a(n+1)]=1/[n*(N=1)]=1/n-1/(n+1)
所以Sn=(1-1/2)+(1/2-1/3)+.+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)
数列an中,a1=1,an\an+1是关于X的方程 X平方—(2n+1)x+1/Bn=0的两根,则数列Bn的前n项和Sn
数列{an}中,an,an+1是方程x^2-(2n+1)+1/bn=0两根,则{bn}的前n项和Sn等于
数列{an}中,a1=1,an,an+1是方程x2-(2n+1)x+1bn=0的两个根,则数列{bn}的前n项和Sn=(
设数列an的前n项和为sn,sn=n^2+n,数列bn的通项公式bn=x^(n-1)
已知数列{an}和{bn}.若数列{an}的相邻两项an,an+1是关于x的方程x^2-2^nx+bn=0(n∈N*)的
a1=1.an+1=2an+2^n.bn=an/2^n-1.证明bn是等差数列、求数列的前n项和sn?
已知数列{an}的相邻两项an,an+1是关于x的方程x^2-2^n x+bn=0(n属于N*)的两个根,a1=1
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
数列{an},a1=1,an=2-2Sn,求an,若bn=n*an,求{bn}的前n项和Tn
数列an相邻的两项an,an+1,是关于x的方程x^2-2^nx+bn=0的两根,且a1=1.
已知数列an bn其中a1=1/2数列an的前n项和Sn=n^2an(n≥1) 数列bn满足b1=2 bn+1=2bn
数列an中a1=2 an+1=an+2n①求an的通项公式②若an+3n -2=2/bn,求数列bn的前n项和sn